
 



 

 

 

 

To my wife,  

Inok 

 

 -ii-



ABSTRACT 

A real-time intelligent robotic weed control system was developed for selective 

herbicide application to in-row weeds using machine vision and precision chemical 

application.  The image processing algorithm took 0.34s to process one image containing 

10 plant objects, representing a 11.43 cm by 10.16 cm region of seedline, and allowing 

the prototype robotic weed control system to travel at a continuous rate of 1.20 km/h.  In 

actual field trials conducted in a commercial processing tomato field, the robotic weed 

control system correctly identified and didn’t spray 75.8% of the tomato plants and 

correctly sprayed 47.6% of the weeds.   

The color segmentation look-up-tables made in hue, saturation, intensity color 

space were generally better than those made in normalized red, green, blue and 

un-normalized red, green, blue color spaces.  Overall, look-up-tables built only with hue 

gave the best performance, correctly classifying 77.8% of color pixels. 

In validation tests with 290 field images from 13 different commercial processing 

tomato fields, the image processing algorithm correctly identified 58.5% - 80.7% of 

tomato cotyledons, 9.0% - 21.2% of tomato true leaves, 8.9% - 12.9% of tomato leaves 

that were curled, occluded, bug-eaten or partially hidden by the edge of the image, and 

93.0% - 95.5% of weeds using plant area, length to perimeter ratio, and occupational 

ratio. For separation of occluded plant leaves, 5 modifications to the watershed algorithm 

were investigated.  The performance of opening, feature criteria, and combined opening 

and feature criteria modifications were better than others.  The recognition of occluded 

tomato cotyledons and true leaves improved 33.3% and 41.1%, respectively, after the 

modified watershed algorithm was applied to occluded objects.  The angle of tomato 

 -iii-



cotyledon orientation for some varieties changed at different times of day.  The critical 

orientation angle for tomato cotyledon recognition was estimated as 27.5° with the 

vertical axis of the plant.  Spray trials with 2.54 cm and 1.27 cm diameter targets showed 

that the robotic spraying system correctly sprayed these simulated “weeds”, targeting 

their centers within an average spatial error of 0.51 - 1.36 cm and a standard deviation of 

0.21 - 0.71 cm on three different ground surfaces. 

 

 

 -iv-



ACKNOWLEDGMENTS 

 

 I would like to express my deepest appreciation to my advisor, Dr. David C. 

Slaughter for his invaluable guidance, financial support, and encouragement.  Without his 

dedication, this work would have not been done.  I also would like to thank the rest of my 

dissertation committee, Dr. D. Ken Giles for his extensive support and advice for 

implementing precision chemical application system, and Dr. Gary E. Ford for his 

revision and comments on my dissertation.  Thanks are also given to professor Shrini 

Upadhyaya for his helpful discussion and assistance.   

I also acknowledge Dr. Daehie Hong for helpful advice in serial communication, 

Dr. Serge Beucher for valuable suggestion in watershed method, Garry Pearson and Jim 

Jackson for their support for field work, and Ken Zeff from Ag-Seeds Unlimited, 

Woodland, CA for supplying tomato seeds.  Special thanks are given to processing 

tomato farmers (Tony Turkovich, Mark Cooley, Emmett and Jim Heidrick, and Joe  

Heidrick) for supplying their own commercial processing tomato fields for our field tests.  

I would like to thank all professors, staff members, and fellow students in the Biological 

and Agricultural Engineering department, who have helped me in my study and research.   

Special appreciation are given  to my parents for their care, love and support all 

these years.  Finally, sincere thanks are given to my lovely wife, In Ok Kim, for her 

patience, understanding and support throughout this work.  Jae Young and Jae Hee, my 

lovely son and daughter, are also a part of my dissertation. 

        

Won Suk Lee 

 -v-



TABLE OF CONTENTS 

 
TITLE PAGE     i 
 
ABSTRACT     iii 
 
ACKNOWLEDGMENTS     v 
 
TABLE OF CONTENTS     vi 
 
GLOSSARY OF ABBREVIATIONS AND NOTATIONS     ix 
 
1.  INTRODUCTION     1 
  
2.  BACKGROUND     7 
 
   2.1  Plant identification     10 

   2.2  Real-time machine vision application     15 

   2.3  Separation of partially occluded objects     16 

   2.4  Precision farming and selective chemical application     18 

   2.5  Color image segmentation and Bayes’ classifier     22 

   2.6  Definitions of image processing commands     25 

 
3.  MATERIALS AND METHODS     28 
 
   3.1  Overview of the research and the robotic weed control system     28 

   3.2   Robotic weed control system     30 

         3.2.1  Image Processing Hardware     30 

         3.2.2  Outdoor image acquisition and uniform illumination device     34 

         3.2.3  Precision spraying system     35 

   3.3 Image analysis     37 

         3.3.1  Image processing algorithm - Programs for field tests     37 

                   3.3.3.1  Image acquisition preparation      37 

                   3.3.3.2  Image acquisition      40 

                   3.3.3.3  Color image segmentation with Bayes’ decision rule     42 

                   3.3.3.4  Look-Up Table construction for image binarization     52 

 -vi-



                   3.3.3.5  Look-up table and image quality     57 

                   3.3.3.6  Binary image pre-processing     60 

                   3.3.3.7  True leaf recognition: Curvature calculation     61 

                   3.3.3.8  Partially occluded leaves: Watershed algorithm     67 

   3.4  Bayesian classifier with features     80 

                   -Method I     91 

                   -Method II     92 

                   -Method III     94 

   3.5  Displacement sensing and calibration of encoder     96 

   3.6  Precision chemical application system     98 

         3.6.1  Nozzle design     99 

         3.6.2  Valve / nozzle design     101 

         3.6.3  Valve driver circuit     104 

         3.6.4  Valve and encoder software     105 

   3.7  Test procedure of precision chemical application system     114 

         3.7.1  Performance of encoder     114 

         3.7.2  Spray targeting accuracy without imaging     114 

         3.7.3  Spray targeting with imaging on different ground surfaces     116 

   3.8  Procedure for field testing of the prototype system     118 

         3.8.1  Speed of the image processing commands and algorithm     118 

         3.8.2  Field testing of the prototype system     119 

   3.9  Cotyledon opening experiment in a field     122 

   3.10  Transgenic purple tomato plants     128 

 
4.  RESULTS AND DISCUSSIONS     132 
 
   4.1 LUT performance     132 

                   - Method I     135 

                   - Method II     147 

   4.2  Plant recognition performance     149 

         4.2.1  Cotyledon opening experiment results     149 

 -vii-



         4.2.2  Bayesian classifier with features     154 

                   - Method I     154 

                   - Method II     177 

                   - Method III     188 

                   - Final selection of the best feature subsets     192 

         4.2.3  Separation of touching leaves: Watershed method     198 

   4.3  Performance of precision chemical application system     216 

         4.3.1  Displacement sensor performance    216 

         4.3.2  Spray targeting accuracy without imaging     218 

         4.3.3  Spray targeting with imaging on different ground surfaces     227 

                    - Indoor tests of the prototype system with rectangular (“tomato 

                       cotyledon”) and circular (“weeds”) targets     230 

                   - Comparison of spraying-only test with imaging & spraying test     232 

   4.4  Speed of the prototype system and field testing     234 

   4.5  Recognition of transgenic purple tomato plant     239 

 
5.  SUMMARY AND CONCLUSIONS     244 
 
   5.1  Real-time prototype system     244 

   5.2  Performance of precision chemical application system     245 

   5.3  LUT performance     246 

   5.4  Plant recognition performance     247 

   5.5  Separation of touching leaves: Watershed method     248 

   5.6  Diurnal changes in plant appearance     250 

   5.7  Recognition of transgenic purple tomato plant     250 

 
6.  RECOMMENDATIONS FOR FUTURE WORK     252 
 
REFERENCES     254 
 
APPENDIX     266 

 -viii-



 GLOSSARY OF ABBREVIATIONS AND NOTATIONS 
 
A area of a nozzle 

ABSAVGC average of absolute value of curvature 

ABSUMINV sum of absolute  value of radius of curvature 

AREA area of an object 

ATC ratio of area to average of the absolute values of curvature 

ATL ratio of area to length 

ATP ratio of area to projection area 

AVGC average curvature 

B blue 

CMP compactness 

CNTRD centroid of an object 

CTC ratio of compactness to average of the absolute values of curvature 

ECCN eccentricity 

ELG elongation 

ETC ratio of elongation to average of the absolute values of curvature 

G green 

H hue 

HET height 

I intensity 

IPC image processing computer 

LHW logarithm of ratio of height to width 

LTP ratio of length to perimeter 

LUT look-up table 

M  number of pattern classes 

M02 second moment of an object along the y-axis 

M11 multiplied moment of inertia of an object around the centroid  

M20 second moment of an object along the x-axis 

MAXC maximum curvature 

MIC microcontroller 

 -ix-



MINC minimum curvature 

MJX major axis 

MNX minor axis 

MTM ratio of MJX to MNX 

MTMC ratio of difference of MAXC & MINC to sum of MAXC & MINC 

NEG occurrence of negative curvature 

OCCR occupational ratio 

P(ωi) a priori probability of class ωi

P(ωi | x) a posteriori probability of x, given ωi

PERIM perimeter 

PRINAXIS orientation of principal axis of inertia of an object 

PTB ratio of perimeter to broadness 

PTC ratio of perimeter to average of the absolute values of curvature  

PTP ratio of Pythagorean length to perimeter 

Q
•

 flow rate 

R red 

S saturation 

SUMINV sum of radius of curvature 

STDEVC standard deviation of curvature 

TAREA threshold of AREA between non-occluded and occluded objects 

TCCAVE threshold of concavity between non-occluded and occluded objects 

V exit velocity of a spray drop from a nozzle 

W0 original watershed algorithm 

W1 watershed algorithm modified with opening algorithm 

W2 watershed algorithm modified with pre-flooding 

W3 watershed algorithm modified with feature criteria 

W4 watershed algorithm modified with concavity criteria 

W5 watershed algorithm modified with combined opening and feature 

criteria 

 

 -x-



WID width 

YCNTRD y-coordinate of a centroid  

acount number of character ‘a’ sent to IPC from MIC 

aflag set to 1 after a character ‘a’ is sent to IPC from MIC 

b normalized blue 

ccount character count read from serial buffer in MIC 

ccount0 a variable used to store previous value of ccount. 

char0 position byte indicating column number (1 - 18) sent from IPC to 

MIC 

char1 valve byte sent from IPC to MIC 

cpc number of encoder counts per spray cell 

display_timer a variable keeps serial buffer being checked for 1000 ms 

f(i, j) binary intensity level of a pixel at the (i, j) location 

g normalized green 

hmin minimum height 

k number of columns that the store_ptr0 must be advanced 

k0 k0 = 0 indicates that  IPC and MIC are in synchronization 

m1 number of occluded leaves over cut 

m2 number of occluded leaves uncut 

m3 number of occluded leaves properly cut 

m4 number of total correctly cut leaves 

mi = E{x | ωi } mean vector of class ωi

mycount indicates that IPC finishes processing an image 

n dimension of feature space 

n1 number of plant pixels in plant-only image 

n2 number of non-black background pixels in background-only image 

n3 number of non-black pixels in segmented plant-only binary image 

n4 number of non-black pixels in segmented background-only binary 

image 

noz_ofs number of spray cells between two lines of valve arrays 

 -xi-



p(x) probability density of x  

p(x | ωi) conditional probability density of x, given ωi  

position_counter number of columns sprayed by valve system in the current image 

r normalized red 

s arc length 

spray_array array variables which has valve byte. Cleared after spraying 

spray_delay spray delay from the camera to first line of valves 

spray_ptr spray_array index indicating which valve byte is sent to nozzles 

stored array variables which stores valve bytes to compare with  

    those sent from IPC 

store_ptr0 spray_array index used to store valve byte into spray_array 

x feature vector, e.g. {r, g, b} or {CMP, ELG, LTP} 

Λ likelihood ratio 

Σi Covariance matrix of class ωi  

κ curvature 

α significance level 

θ polar angle of the unit tangent vector 

γ openness of a cotyledon (angle of a cotyledon) 

ωi  ith pattern class 

∀ For all 

 

 -xii-



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Copyright by 
 

WON SUK LEE 
 

1998 
 

 

 -xiii-



 1

1. INTRODUCTION 

A weed can be thought of any plant growing in the wrong place at the wrong time 

and doing more harm than good. Weeds compete with the crop for water, light, nutrients 

and space, and therefore reduce crop yields and also affect the efficient use of machinery 

(Parish, 1990). Many methods are used for weed control. Among them, mechanical 

cultivation is commonly practiced in many vegetable crops to remove weeds, aerate soil, 

and improve irrigation efficiency, but this technique cannot selectively remove weeds 

located in the seedline between crop plants. The most widely used method for weed 

control is to use agricultural chemicals (herbicides and fertilizer products). In fact, the 

success of U.S. agriculture is attributable to the effective use of chemicals.  For example, 

a total of 5.9 million kg of agricultural chemicals (herbicides, insecticides, fungicides, 

and other chemicals) were used to produce processing tomatoes in California alone in 

1994 (USDA, NASS and ERS, 1995).  This heavy reliance on chemicals raises many 

environmental and economic concerns, causing many farmers to seek alternatives for 

weed control in order to reduce chemical use in farming.  For some crop/weed situations 

there are no selective herbicides.  Selective herbicides selectively kill only weeds and not  

crop plants, thus they are important for weed control.     

Since hand labor is costly, an automated weed control system may be 

economically feasible.  A real-time precision robotic weed control system could also 

reduce or eliminate the need for chemicals.  Although there have been many efforts to 

control in-row weeds, no system is currently available for real-time field use.  In this 

research, an intelligent real-time robotic weed control system has been developed to 

identify and locate outdoor plants for selective spraying of in-row weeds using an  



 2

environmentally sound and friendly chemical application system based upon machine 

vision technology, pattern recognition techniques, knowledge-based decision theory, and 

robotics.  Figure 1.1 shows testing of the prototype robotic weed control system in a 

commercial processing tomato field. 

The juvenile processing tomato field plants were selected as the target crop plant 

since tomatoes are one of the more profitable leading crop plants in California which  

have serious weed control problems.  Tomato plants also provide a challenge for machine 

vision recognition with their highly variable shapes and sizes.  However this research 

could also easily be applied to many other crops.  Figure 1.2 shows juvenile tomato 

plants and Figure 1.3 shows some of the commonly found weeds in commercial 

processing tomato fields in northern California.   

 

 
 

Figure 1.1 Field testing of the prototype robotic weed control system. 

 



 3

 
 
 
 
 
 

Tomato
cotyle don

Tomato
cotyle don

Tomato
true  le af

Tomato
true  le af

Nightshade

              

Tomato
cotyle don

Tomato
true  le af

 
 
 
 

Tomato
cotyle don

Tomato
true  le af

Tomato
cotyle don

              

Tomato
cotyle don

 
 

 
Figure 1.2  Tomato plants in commercial fields. 



 4

                                 
 

(a) Black nightshade. (b) Groundcherry.  (c) Hairy nightshade. 
 

                   
 

(d) Lambsquarters. (e) Mustard. (f) Nettleleaf goosefoot. (g) Shepherdspurse.
 

              
 

(h) Cheeseweed. (i) Redroot pigweed. (j) Groundsel. 
 

                           
 

(k) Velvetleaf. (l) Field bindweed. (m) Yellow  
nutsedge. 

(n) Large  
crabgrass. 

 
Figure 1.3 Some of the most common and troublesome weeds in California tomato fields. 

(University of California Statewide Integrated Pest Management Project, 
1985.  Photographer: Jack Kelly Clark.  Used with permission.) 



 5

Tomatoes are one of the leading vegetable crops produced in California.  In 1996, 

over 9 billion kg of processing tomatoes were produced in California, accounting for 

93% of all processing tomatoes produced in the U.S. (USDA and NASS, 1997).  

However, the current in-row weed control method is highly dependent on labor-intensive 

and costly hand hoeing.  A significant amount of manual work is still required for weed 

control in crop rows, which hopefully can be automated with today’s rapidly growing 

state of the art computer technologies.   

For processing tomatoes in California, the cost for weed control was about $50 

per 0.4 ha for herbicides and $80 per 0.4 ha for hand weeding in northern California in 

1996. According to the economic analysis for the prototype machine by D. C. Slaughter 

(1996), if a prototype robotic system could travel at 0.8 km/hr, the savings would justify 

a purchase price of over $110,000 per machine considering the current cost. This assumes 

a three-row machine for rows spaced 1.52 m apart, an operating period of 45 days per 

season, 60 % of overhead and operating costs, no interest, and a five year machine life. 

Agriculture should take advantage of today’s state of the art technology. More 

and more computers are being used in farming to minimize cost and maximize yields.  

Even satellites are used for smart and precision farming using the Global Positioning 

System (GPS) and the Geographic Information System (GIS).  Complete farm 

automation would be an ultimate goal.  This research explored the feasibility of using a 

robot as a means of cultivating and thinning and as one of  the stepping stones for 

automated farming. Costly, tedious and labor-intensive manual operations need to be 

automated.  

 



 6

OBJECTIVES 

The goal of this project was to build a real-time machine vision based robotic 

weed control system that can detect crop and weed locations, kill weeds and thin crop 

plants.  The system needed to recognize tomato plants and weeds outdoors in commercial 

tomato fields using image processing techniques while moving forward at a constant 

speed.  Specific objectives were to: 

(1) develop and implement a color machine vision algorithm in real-time for 

identifying crop plants and weeds in the seedline, 

(2) develop a precision chemical application system for the control of in-row weeds 

for optimal use of pesticides and high efficiency,  

(3) develop a uniform illumination device for field use with a real-time computer 

vision system to facilitate high image quality, 

(4) develop an algorithm which can distinguish tomato plants older and larger than 

the cotyledon  stage, 

(5) increase the accuracy and speed of the algorithms implemented in real-time in 

order to distinguish tomato seedlings in the field, and 

(6) evaluate the performance of a prototype system in commercial processing tomato  

fields. 

 



 7

2. BACKGROUND 

Ever since humans started farming, weeds have been one of the major obstacles  

to maximizing production.  Until recent technologies evolved, farming has been  

dependent on human power.  Although there have been a lot of efforts to control in-row 

weeds effectively, no system is currently available to replace tedious and time-consuming  

hand weeding.  Figure 2.1 shows the current in-row weed control technique (hand 

hoeing) in a commercial processing tomato field in northern California.   

 

 

Figure 2.1  Current in-row weed control technique (hand hoeing) in a commercial  
processing tomato field in northern California. 

 

Hand hoeing is costly, time consuming and labor intensive.  For example, the cost 

for hand weeding was about $80 per 0.4 ha (1 acre) for processing tomato production in 

northern California in 1996.  In California, there were over 12 million ha of farm land in 

82,000 farms in 1996.  Among them, 140,183 ha were used for tomato production, Table 

2.1. 



 8

 

Table 2.1  Area harvested, production and value per ton for tomato production 
in California in 1996. 

 
 Fresh Processing 

Area (ha) 13,516.5 126,666.6 
Production (ton) 484,300.1 10,660,780.0 
Value per ton ($) 504.0 62.30 

 

One of the major issues concerning agricultural production in California was the 

current heavy reliance on agricultural chemicals to optimize yields and minimize costs.  

A total of 53.0 million kg of agricultural chemicals (fertilizers, herbicides, insecticides, 

fungicides and other chemicals) were used to produce tomatoes in California alone in 

1994 (USDA, NASS and ERS (1995)), Table 2.2. 

 

 

Table 2.2  Chemical usage in tomato production in California in 1994. 
 

Chemicals Fresh (x 1000 kg) Processing (x 1000 kg) Total (x 1000 kg) 
Fertilizers 5,797.8 40,034.1 45,831.9 
Herbicides 10.5 200.4 210.9 
Insecticides 78.6 99.2 177.8 
Fungicides 511.9 4,453.1 4,965.0 

Others 418.6 1,423.8 1,842.4 
Total 6,817.4 46,210.6 53,028.0 
 

 

However, this heavy reliance on chemicals raised many concerns about health and 

environmental aspects. The current concern over the use of methyl bromide is an 

example of some of the issues associated with the use of agricultural chemicals. Ferguson 

and Padula (1994) investigated the economic effects of banning methyl bromide (MB) 



 9

for soil fumigation which had been widely used to control soil pests and protect stored 

commodities, since MB contributes to the depletion of the stratospheric ozone layer. 

They reported that the Environmental Protection Agency (EPA) might ban the use of MB 

by initiating action under the Clean Air Act that required a phaseout of MB uses by the 

year 2001.  They predicted that losses for tomato growers would be about $86 million per 

year if the available alternatives for tomatoes were used, while the net revenue loss 

would be about $100 million annually if no alternatives were available. 

There has been a lot of effort to control weeds non-chemically in order to reduce 

chemical costs in response to environmental pressure. These methods can be largely 

divided into cultural weed control methods, mechanical control methods, and biological 

control methods.  In this research, mechanical control methods were the main focus. 

These include hand pulling or hoeing, tillage, cultivation, burning, flame cultivation, and 

electrical devices (Cooperative Extension Service (1995)). There were some researchers 

who investigated non-chemical weed control methods (Parish (1990)   and Bond (1992)), 

but as Bond pointed out, few attempts have been made to selectively control weeds in the 

seedline.  However, with advances in image processing and machine vision technologies, 

many researchers have applied these techniques to agriculture to identify individual crop 

plants. 

Image processing and machine vision technologies have been applied 

successfully to many agricultural settings recently. Properly applied machine vision 

techniques improve manufactured product quality and provide valuable process control 

information (Novini, 1992). Their primary agricultural applications are automatic 

inspection and sorting of agricultural products (Shearer and Payne (1990), Miller and 



 10

Delwiche (1991), Al-Janobi and Kranzler (1994), Lan et al. (1996) and Crowe and 

Delwiche (1996a, b)), and identifying and locating individual crop plants (Jia et al. 

(1990) and Tian and Slaughter (1993)).  Machine vision has been also used for guiding a 

robotic system in the harvest of fruits (Slaughter and Harrell (1989)), detecting fruit 

defects, evaluating chemical applications (Jiang and Derksen (1993)) and investigating 

plant architectural measurements (Tarbell and Reid (1989)).   

 

2.1 Plant identification 

Machine vision technologies have been applied to agriculture to identify and 

locate individual plants.  Many researchers have tried various image processing methods, 

working in different environments; however, most of the work has been done indoors 

with controlled illumination and an adequate setup for the acquisition of high quality 

images.  In an early study typical of those to follow, Guyer et al. (1986) studied the 

feasibility of using machine vision to identify the species of potted, greenhouse-grown 

weeds.  In this study, Guyer et al. noted that plants grown in a greenhouse had a different 

appearance from those grown under the natural outdoor environment of a commercial 

farm. 

The variety of visual characteristics that have been used in indoor plant 

identification can be divided into three categories: spectral reflectance, morphology, or 

texture.  Many studies (e.g. Slaughter and Harrell (1989), Franz et al. (1991b), 

Woebbecke et al. (1995a), Zhang and Chaisattapagon (1995), Brivot and Marchant 

(1996), and Shiraishi and Sumiya (1996)) have used color or near infrared reflectance to 

distinguish the fruits or plants from the background.  In a few situations, researchers have 



 11

found that spectral characteristics alone can be used to distinguish between selected plant 

species, but this technique is usually insufficient to distinguish crop plants from weeds 

on a typical California farm. Morphological characteristics of plant leaves such as central 

moment, complexity, principal axis of moment of inertia, first invariant moment, aspect 

ratio, radius permutation, ratio of perimeter to longest axis, compactness, and elongation 

have been used to classify plant species with some success (e.g. Guyer et al. (1986), 

Franz et al. (1991a), Woebbecke et al. (1995b), and Shiraishi and Sumiya (1996)). In a 

few cases textural feature analysis has also been used to identify plant species (e.g. 

Shearer and Holmes (1990), Burks and Shearer (1995), Zhang and Chaisattapagon 

(1995) and Ahmad et al. (1996)).  

 Among morphological characteristics of plant leaves, curvature has also been 

used as one of the major tools to identify plant leaves. Many researchers studied how to 

estimate curvature accurately and precisely from a discrete grid (Asada and Brady 

(1986), O’Gorman (1988), Worring and Smeulders (1992 and 1993)).  

Sarkar and Wolfe (1985) used the minimum curvature of the chain coded tomato 

boundary as the feature for detecting shape for classification of fresh market tomatoes, 

however they made some typical assumptions such as non-occlusion, pre-orientated 

objects, diffused light, and darker background.  Franz et al. (1991a) used curvature to 

describe boundaries of both completely visible and partially occluded leaves. They 

reported that partially occluded leaves were identified by aligning the resampled 

curvatures with species models. However, they found that curvature was an inadequate 

shape descriptor for the leaves with variable leaf serration while a curvature matching 

method was applied.  Tao et al. (1995) used boundary information to identify shapes of 



 12

potatoes. Even though they didn’t use curvature directly, they used normalized radius 

boundary and its Fourier transform and achieved 89% agreement with human judgment 

for shape grading of potatoes. Shiraishi and Sumiya (1996) also used the curvature of leaf 

boundaries along with other features for plant identification using quasi-sensor fusion 

and total occurrence range and reported that they obtained satisfactory discrimination 

results.  They reported difficulties in recognizing overlapped leaves.  

As a preliminary effort to develop new techniques and new weed control 

machinery for the California agricultural industry (which has been developed at the 

University of California, Davis), Tian and Slaughter (1993) developed and tested a 

computer vision algorithm in a laboratory environment to detect and locate individual 

tomato plants with images taken in commercial tomato fields. They used hue and 

excessive green (= 2Green-Red-Blue) to get binary images by thresholding and 

extracting features such as compactness (CMP), elongation (ELG), and y-coordinate of 

the  centroid of leaves from binary images. With 28 field images, the algorithm was able 

to identify almost all the isolated tomato cotyledons, and determined the inward position 

of occluded cotyledons with an accuracy of 61.2%. 

Further, Tian (1995) studied the feasibility of using a machine vision system to 

identify individual plants with images taken in the natural outdoor environment.  He 

reported problems associated with non-uniform illumination.  The four features, 

elongation (ELG), compactness (CMP), the logarithm of the ratio of height to width 

(LHW), and the ratio of length to perimeter (LTP) were used as the optimum subset 

among all features for tomato cotyledon recognition. He identified between 61 to 82 

percent of all the individual plants in about 270 frames of field images in a laboratory 



 13

environment.  However, the research ended before high speed algorithms were developed 

for implementation in a real-time computer vision system for use in a commercial field.  

The following feature definitions were used by Tian (1995) and these definitions were 

also used to identify tomato plants and weeds reported in this research along with other 

features defined later in chapter 3. 

 

+

MNX

MJX

WID

HET

CNTRD
PERIM

y

xxmi n xmax

ymin

ymax

Bounding Box

 

Figure 2.2  Definitions of major axis, minor axis, perimeter and centroid. 

 

 Area (AREA) was defined as the number of pixels in an object.  Height (HET) 

was the difference between the largest (ymax) and the smallest vertical coordinate (ymin) 

plus one.  Width (WID) was defined as the difference between the largest (xmax) and the 

smallest (xmin) horizontal coordinate plus one.  Major axis (MJX) was defined as the 

longest axis of a bounding box by which an object is enclosed (Figure 2.2).  Minor axis 

(MNX) was defined as the shortest axis of a bounding box perpendicular to the major 



 14

axis.  Perimeter (PERIM) was defined as the number of boundary pixels.  Centroid 

(CNTRD) of an object, ( x y,  ), was defined as the center of area as in Eq. (2.1) and Eq. 

(2.2). 

x
xb x y dxdy

b x y dxdy
I

I

 =  
 

( , )

( , )

∫∫
∫∫

 
(2.1)

y
yb x y dxdy

b x y dxdy
I

I

 =  
 

( , )

( , )

∫∫
∫∫

 
(2.2)

         where I is an image, and  

       b(x, y) is a pixel value of a binary image. 

HET = ymax - ymin + 1 (2.3)

WID = xmax - xmin + 1 (2.4)

ATL  = 
AREA
MJX

 
(2.5)

CMP = 
16 AREA
PERIM2  

(2.6)

ELG = 
MJX -  MNX
MJX + MNX

 
(2.7)

LHW = log10
HET
WID

⎛
⎝⎜

⎞
⎠⎟  

(2.8)

LTP = 
MJX

PERIM
 

(2.9)

PTB =  
PERIM

2(HET +  WID)
 

(2.10)

 



 15

The area to length ratio (ATL) was defined as Eq. (2.5).  The compactness (CMP) 

was used to describe complexity of planar objects and was defined in Eq. (2.6) so that the 

CMP was one for a perfect square. Elongation (ELG) was the measurement of how long 

and narrow an object was. The logarithm of the ratio of height to width (LHW) gave a 

symmetric measure of the aspect ratio of an object.  The ratio of length to perimeter 

(LTP) was a measure of the 2-D distribution pattern of the boundary of an object.  The 

ratio of perimeter to broadness (PTB) was a measurement of a convex region. 

 

2.2 Real-time machine vision application 

After image processing technologies have been developed, the natural transition 

is its “real-time” field application. “Real-time” application means that the system could 

keep up with the system input rate.  There are a few machine vision systems which have 

achieved  real-time application.  Slaughter et al. (1992 and 1997) developed a real-time 

guidance system for precision cultivation (later named the “UC Davis Robotic 

Cultivator”) that could identify the center of the row under normal field conditions.  The 

vision guidance system identified the location of the seedline, then the offset between the 

current position and the desired position was adjusted by moving the toolbar laterally.  

The system was tested in tomato fields and the test results indicated that the prototype 

could operate at speeds exceeding 8.0 km/h while precisely positioning the cultivator 

with an overall RMS error ranging from 4.2 mm when there were no weeds to 11.9 mm 

when the area ratio of weed to tomato was 3:1.  This precision UC Davis Robotic 

Cultivator was used as a guidance system for the robotic weed control system reported in 

this research.   



 16

Liao et al. (1994) studied the feasibility of real-time detection of color and surface 

defects of maize kernels.  Using a Matrox Image-1280 real-time image processing board, 

they reported that the processing time required from acquiring live images to the end of 

primitive (basic) feature extraction was from 0.87 s for 1 object to 2.08 s for 12 objects.  

 Haney et al. (1994) applied machine vision to sort wood based on its color.  They 

reported that the system could operate at conveyor speeds up to 110 m/min.  Alchanatis 

and Searcy (1995) built and tested a high speed inspection system for fresh-market 

carrots.  They reported that the system could handle 2 carrots/s with a classification 

accuracy of more than 90%. Crowe and Delwiche (1996a and 1996b) developed an 

image processing algorithm for real-time defect detection in produce. Apples and peaches 

were tested at a rate of  5 fruits/s and the sorting error rate was 25%.  

A group of researchers in Spain have worked to distinguish crop plants from 

weeds (Molto et al. (1996) and Molto et al. (1997)).  They developed a machine vision 

system for robotic weeding of artichokes and lettuce using color differences between 

crop plants, weeds and background.  The average processing time was about 500 ms per 

image.  A mobile robot for non-chemical weed control is planned. 

 

2.3 Separation of partially occluded objects 

One of the difficult tasks for machine vision applications is to recognize partially 

occluded objects.  Human eyes can distinguish overlapped objects very easily since they 

are working in 3-dimensions.  However, it has been a difficult task for machine vision 

systems to recognize overlapped objects using only a single top view.  Occluded objects 

need to be cut apart so that they can be measured separately.  



 17

In an early study, Lester et al. (1978) applied two boundary finding algorithms 

(heuristic searching and the least maximum cost techniques) to white blood cell images 

through a graph searching method.  They reported that the heuristic searching method 

was an effective and efficient procedure.  Whittaker et al. (1987) used a modified circular 

Hough transform to locate partially hidden tomatoes based on shape.  However, this 

algorithm was computationally intensive and could not be performed in real-time.  

Shatadal et al. (1995) developed an algorithm to disconnect touching kernels using a 

mathematical morphology-based approach, however they reported limitations of the 

algorithm in that it failed when the connected kernels formed a relatively long isthmus or 

bridge between them.      

One of the widely used methods for separation of occluded objects is the 

watershed algorithm. Since it was first introduced as a morphological tool by H. Digabel 

and C. Lantu⎯joul (1978), many variations have been produced for this technique.  The 

watershed algorithm can be applied to either gray scale images or binary images.  

Russ (1990) described conditions for successful application of the watershed 

algorithm as “The method makes the implicit assumption that the features are both 

actually convex, so that they should be segmented, and also assumes that the degree of 

touching or overlap is sufficiently small that there is a valley between the peaks at the 

center of each feature in the brightness-coded distance map.” 

Vincent and Soille (1991) developed an efficient and fast algorithm for 

computing watersheds in digital gray scale images based on immersion simulation.  The 

algorithm was composed mainly of two steps: a sorting step and a flooding step.  In the 

sorting step, all pixels were sorted in the increasing order of their gray values to induce 



 18

direct assignment of each pixel to a unique cell in the stored array.  In the flooding step, a 

hole was pierced in every local minima and its catchment basin (a separate region 

corresponding to each local minima) was eventually filled with water from the hole.  

When the two catchment basins would merge, a dam was built to keep water from 

flooding to other basins.  This dam was the watershed (separation line) of overlapped 

objects.  A first-in-first-out data structure was introduced to speed up the computations in 

the flooding step.  This algorithm was used to separate occluded plant leaves in this 

research (see Chapter 3.5.5).   

In order to make thin watershed lines and straightening the watershed lines to 

produce identical watershed lines regardless of the orientation of the object, Orbert et al. 

(1993) also proposed a modified watershed algorithm by fusing the catchment basins.  

They provided two example applications and reported that the new algorithm worked 

well.  

Casasent et al. (1996) applied the binary watershed algorithm to separate 

pistachio nuts in X-ray images and reported that 250 of the 253 clusters were segmented 

correctly.  However, it was not implemented in real-time.  They also reported over 

segmentation (excessive cutting) problems if the boundary was irregular or complex.   

 

2.4 Precision farming and selective chemical application 

As technologies have evolved, site-specific application of agricultural chemicals 

and nutrients has been one of the major concerns in precision farming.  Farmers want to 

concentrate their efforts only where needed to make their farming efficient.  Precision 

farming refers to carefully customizing crop and soil management to fit the different 



 19

conditions found in each field.  Precision farming is sometimes called “site specific 

farming” or “variable rate technology”.  It has been realized with the use of remote 

sensing systems, Global Positioning Systems (GPS) and Geographic Information 

Systems (GIS). More recently farmers have gained access to site-specific technology 

through GPS.  GPS utilizes a series of military satellites that identify the location of farm 

equipment within a meter of its actual site in the field. In conjunction with GPS 

technology, Geographic Information Systems (GIS) can be used to accurately produce a 

map of the data, layering various nutrient levels, soil types, fertility, yield potential and 

other pertinent information.  Therefore, spatially variable application of herbicides would 

be possible and eventually lead environmental benefit as well as cost reduction.    

In the same context as saving agricultural chemical costs and being a more 

environmentally sound application, there has been some work done in selective 

application of herbicides.  However, in the majority of the work, ‘selective’ referred to 

the selectivity of plants vs. soil, not crop vs. weeds. Most of this work utilized a 

difference in reflectance levels between plants and soil background based upon the 

chlorophyll in the foliage absorbing the red radiation which is reflected by the soil.  In 

earlier studies, the ratio of visible to near-infrared radiation (Hooper, Harries and Ambler 

(1976)) and the ratio of red to near-infrared (Haggar, Stent and Isaac (1983), Felton et al. 

(1991), Felton and McCloy (1992), and Merritt et al. (1994)) were used to distinguish 

green vegetation from the soil background.  Some of these led to commercial plant 

detector-sprayers (Weed Seeker PhD 1620, Patchen California, Inc., Los Gatos, CA and 

Detectspray-S45, Concord Inc., Fargo, ND).  



 20

Tauzer et al. (1994) and Tauzer (1995) developed a prototype machine vision 

controlled, boomless, offset herbicide sprayer for roadside vegetation control.  Target 

detection was 100% successful for 5 cm x 5 cm targets at travel speed of 12.9 km/h, 89% 

for 2.5 cm x 2.5 cm targets and 26% for 1.25 cm x 1.25 cm targets.  This system also 

identified only green plants, not crop vs. weeds.  

 Visser and Timmermans (1996) developed an automatic selective herbicide 

spraying system for weed control.  They used the chlorophyll fluorescence effect and 

optically filtered LEDs in a sensor to detect weeds, and solenoid valves to control weed 

spray.  However, the system also detected and sprayed all green plants as “weeds”.  None 

of the systems described above could  spray weeds selectively as opposed to crop plants. 

For future implementation of a crop protection robot for autonomous spraying,  

Brivot and Marchant (1996) explored the feasibility of using infrared images to segment 

plants from soil background in the images of transplanted cauliflower using thresholding 

and replacing pixel values by its minimum neighborhood.  They reported possibilities of 

up to 92% correct classification of crop plants, weeds and background with good images 

and up to 73% with bad images.  In their trials, the weeds were smaller than the crop 

plants, thus it might have been possible to classify crop plants, weeds and background 

using only gray scale images.  However, this technique may not be feasible when the 

crop plants are the same size as weeds, such as non-transplanted crop plants. 

For selective chemical application to weeds vs. crop plants, Tian et al. (1997) 

developed and tested a precision sprayer guided by a machine vision system.  They used 

the wavelet transformation to identify weeds in groups from a field of view of 3.7 m x 

0.43 m by simultaneously analyzing images in spatial and frequency domains.  The 



 21

overall accuracy of the sprayer was 75% for weeds and 48% for crops.  However, this 

precision sprayer system did not identify individual plants, but groups of plants.   

While most of the previous research actually implemented selective chemical 

application for weed control, utilizing GPS and GIS for weed control is not at the 

implementation stage yet, but only at the stage of mapping weed locations in the field for 

later spraying or for tracking weed infestations.  Lass and Callihan (1993) tried to assess  

the accuracy of two types of GPS receivers by mapping weed locations and found that 

GPS data agreed closely with U.S. Geological survey data.  Wilson et al. (1993) 

described and developed a procedure for identifying potential pesticide contamination 

problems for groundwater on weed-infested areas.  They reported that their algorithms 

were used to generate daily precipitation, evapotranspiration, soil carbon, and final 

hazard maps.  Prather and Callihan (1993) developed a geographical information system 

to evaluate its utility in an eradication program for common weeds.  They constructed a 

database to maintain treatment and efficacy data for tracking the process of eradication 

for each infestation.  Stafford et al. (1996) developed and evaluated a portable weed 

mapping system using a palm-top PC data logger and a GPS receiver. They found that 

the system had good potential for aiding a farmer to log weed patches with a good user 

interface to ease learning and operating the system.  Webster and Cardina (1997)  

conducted experiments to test the accuracy of a global positioning system for measuring 

the area of simulated weed patches of varying size and to determine the accuracy in 

navigating back to particular points in a field.  They reported that the relationship 

between GPS error and patch size had an excellent fit and errors decreased as patch size 

increased.   



 22

 
2.5  Color image segmentation and Bayes’ classifier 
 

One important step in implementing a machine vision system is image 

segmentation.  Due to the fact that color images provide more information than gray 

scale images, color information has been widely used in image segmentation since the 

late 1980’s where color was an important characteristic to identify fruits (Slaughter and 

Harrell, (1987)) and individual or groups of plants (Tian (1995) and Tauzer (1995)), to 

implement  a precision guidance system (Slaughter et al. (1997)) or to sort agricultural 

products (Luo et al. (1997)).  Some researchers studied building a color classifier 

(Precetti and Krutz (1993)), analyzing plant images in the HLS color space (Anderson 

and Wendorf (1993)), or image segmentation in color space (Gao et al. (1995)).  

Most of these applications (Tian (1995), Tauzer (1995) and Slaughter et al. 

(1997)) utilized a color look-up table for real-time implementation using the Bayes’ rule.  

The Bayes’ classifier is known to be an optimum classifier in the sense that it minimizes 

the classification error.  Suppose the class-conditional probability density function, p(x | 

ωi) is Gaussian, then 

p(x | ωi) = 
1

2 2 1 2
1

( )
( ) (

/ /
π n

i

T
i

Σ
Σexp -

1
2

x m x m -   -  i
−⎧

⎨
⎩

⎫
⎬
⎭

)i ,   i = 1,2, …, M 

 

(2.11) 

where mi  = mean vector of class ωi, Σi = covariance matrix of class ωi,  

and M = number of pattern classes. 

 

The a posteriori probability, P(ωi | x) of class ωi  membership is calculated using Bayes’ 

rule, given an observation x: 



 23

P(ωi | x) = 
p i( )x  

x)
|  (

(
)ω ωi

p
 P

 
(2.12) 

 

                                          where p(x) = p(x | ω
k = 1

M

∑ k) P(ωk) 

Expected loss or conditional risk in assigning x to ωi is defined as: 

Ri(x) = l
j = 1

M

∑ ij P(ωj | x),     i = 1, 2, …, M 
(2.13) 

where lij = loss sustained if x is assigned to ωi when it is actually ωj.  

The decision rule that minimizes the probability of error results from the use of the 

zero-one loss function: 

lij =  
0
1

i j
i j
 =  
  ≠

⎧
⎨
⎩

(2.14)

 

Then, conditional risk becomes: 

Ri(x) = P(ω
j = 1
j  i≠

∑
M

j | x),      i = 1, 2, …, M 
(2.15)

 

However, note that 

 

j = 1

M

∑ P(ωj | x) =  + P(ωP ( )ω j
j = 1
j  i

|  x

≠

∑
⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

M

i | x) = 1 

Thus, 

Ri (x) = 1 - P(ωi | x) (2.16)
 

 



 24

Therefore, the minimum risk or minimum probability of error decision rule becomes: 

Assign x to ωi if P(ωi | x) > P(ωk | x),     ∀k ≠ i (2.17)
 

Restating the decision rule in terms of discriminant function dk(x),  

Assign x to  ωi if di(x) > dk(x),     ∀k ≠ i (2.18)
 

where the discriminant function for Bayes’ minimum error rate classification is:  

dk(x) = P(ωk | x) = 
p k k( )x | 

x)
)ω ω P (

(p
 

(2.19) 

 

Since p(x) does not depend on k and is always non-negative, it does not affect the 

decision and can be eliminated. The decision function becomes 

dk(x) = p(x | ωk) P (ωk) (2.20) 
 

Assuming the class-conditional probability density function, p(x | ωk), is a Gaussian 

distribution, a log decision function is more useful. Therefore, using Eq. (2.1) and Eq. 

(2.20), the discriminant function becomes: 

 

d k(x)  = ln p(x | ωk) + ln P (ωk) 
 

= -
1
2

{  + ln |( ) ( )x m x m -   -  k
T

kΣ
−1

k Σ k |} + ln P(ωk) 
(2.21) 

 

 

To implement the above Bayes’ discriminant function on a given feature vector, x, the 

class-conditional probability density function p(x | ωk) is calculated for each class k from 

Eq. (2.1). Then, the class associated with the largest probability is assigned to the feature 



 25

vector x.  A mean vector of class ωi, mi  and a covariance matrix of class ωi, Σi, need to 

be estimated from a training data set prior to implementation.   

In previous real-time applications (Slaughter and Harrell (1987), Tauzer (1995) 

and Slaughter et al. (1997)), the Bayes’ classifier was implemented in software, by 

allocating a large array in RAM and then developing a mechanism to allow the CPU to 

access the specific decision in the array in real-time.  However, in this research, a 

recently developed new hardware based system (Sharp AUXLUT card) was used to 

implement the Bayes’ classifier in real-time, which did not require the CPU. This was a 

significant improvement from what was done in the previous applications.  This new 

system allowed a real-time color LUT conversion (about 3 ms with an image size of 256 

x 240) in a faster  and different way by one pass pixel by pixel multiplication of two 

images (details are explained in chapter 3).   

 

2.6  Definitions of image processing commands  

Once a binary image is obtained from color image segmentation, the resulting 

binary image must be processed in order to remove any noise and to get an accurate  

shape of the plant leaves.  This section explains definitions of such processing steps as 

translation, reflection, dilation, erosion, shrinking, swelling and deletion of isolated 

points, which were used to enhance the binary image throughout this research.   

Let A and B be sets in the 2-D integer space Z2, with components a = (a1, a2) and 

b = (b1, b2), respectively.  The translation of A by x = (x1, x2), denoted (A)x, is defined as  

(A)x = {c | c = a + x, for a ∈ A} (2.22)
 



 26

The reflection of B, denoted $B , is defined as  

$B  = {x | x = -b, for b ∈ B} (2.23)
 

For sets A and B in the 2-D integer space Z2 and φ denoting the empty set, the dilation of 

A by B  is denoted A  ⊕ B  and is defined as  

A ⊕ B = {x | (  ∩ A ≠ φ} $)B x
(2.24)

 

The dilation of A by B is the set of all x displacements such that $B  and A overlap by at 

least one nonzero element.  Set B is commonly referred to as structuring element.   

The erosion of A by B is denoted A  B and is defined as  

A  B = {x| (B)x ⊆ A} (2.25)
 

The erosion of A by B is the set of all points x such that B, translated by x, is contained in 

A.   

 

P

                                 

P

 

(a) 4-connected neighbors. (b) 8-connected neighbors. 
 

Figure 2.3  Neighborhood connectedness. 
 
 

Opening of set A by structuring element B, denoted A o  B, is defined as  

A  B = (A o  B) ⊕ B (2.26)
 



 27

Shrinking is accomplished by removing all border pixels according to a specified 

neighborhood connectedness.  The neighborhood connectedness for a center pixel P is 

defined in Figure 2.3.  Likewise, swelling is accomplished by expanding all border pixels 

by one pixel to the background according to neighborhood connectedness.  Deletion of 

isolated points is to remove any single pixels in an image. 

 The application of these processing steps to plant images was important in order 

to obtain more realistic leaf shapes in the binary images since these binary images were 

eventually used for distinguishing tomato plants and weeds.  In this research, plant 

identification was mainly based on their shape analysis.   More realistic shape was 

important in order to produce correct results.   

 



 28

3. MATERIALS AND METHODS 

 

3.1 Overview of the research and the robotic weed control system 

 The objective of this research was to develop a real-time robotic weed control 

system for seedline weeds and to replace costly hand weeding with robotic weed control 

using machine vision, pattern recognition, and robotics.  All research was conducted with 

juvenile processing tomato plants in commercial tomato fields in northern California 

during 1996 and 1997.  Tomato images were acquired in 5 different fields in 1996 and in 

8 different fields in 1997.   

The UC Davis Robotic Cultivator (Slaughter et al., 1997) was utilized as a 

guidance system to center the prototype system over the row, Figure 3.1.  A seedline 

image was acquired for the recognition of plant leaves.  Plant leaves were identified 

using their shape characteristics and  the Bayesian discriminant function.  After 

distinguishing tomato plants from weeds, the main computer sent the weed locations to a 

precision chemical application system which opened a corresponding spray valve in the 

valve/nozzle array when it was above a weed plant.  The precision chemical application 

system consisted of 8 valves/nozzles, which due to space constraints were aligned in two 

rows (four in each row).  For precise herbicide application, the image was subdivided 

into a spray grid of 8 rows by 18 columns.  Each cell in the spray grid corresponded to a 

1.27 cm by 0.64 cm region on the seedbed.  The precision spray system was capable of 

applying chemical herbicides to individual spray cells providing a level of precision 

unparalled in existing agricultural spray systems.  

 

 



 29

 

 

+ y

+ x

GUIDANCE
CAMERA

RECOGNITION
CAMERA

VALVE / NOZZLE
ARRAY

SCANNING

IN MEMORY

W EED
SPRAYING

TRAVEL
DIR ECT ION

SEEDL INE

TOMATO
PLANT

W EEDS

10.16 CM  

 

Figure 3.1 Concept drawing of the robotic weed control system. 

 



 30

3.2 Robotic weed control system 

3.2.1 Image Processing Hardware 

A real-time computer vision system was developed for plant species recognition.  

The following equipment was used to implement the real-time computer vision system, 

Figure 3.2.  The system consisted of an IBM compatible computer, a set of three 

real-time image processing boards, a camera, and a camera controller board.   

A SHARP GPB-2 board was used as the basis for the hardware portion of the 

image processing system.  The GPB-2 board performed image processing subroutines 

using twelve 512 row by 512 column by 8 bit image memory banks.   

A SHARP INCARD was used to acquire the three simultaneous NTSC (National 

Television System Committee) color video inputs (red, green, and blue video signals) for 

color image processing.  The INCARD was directly interfaced to the GPB-2, which 

allowed real-time color image transfer to occur without sending the image across an 

external computer bus.   

A SHARP AUXLUT card was used for real-time image segmentation.  Like the 

INCARD, the AUXLUT card was also directly interfaced to the GPB-2 for real-time 

operation.  This card provided look-up table (LUT) conversion for data coming from one, 

two, or three GPB memory buffers.  The LUT output was placed in another GPB memory 

buffer for further processing.  The AUXLUT card had two 16 bit inputs to 8 bit LUTs, 

each made up of two 65K bytes by 4 static RAMs.   

A R, G, B color video camera (Model 2222-1340/0000, Cohu, Inc.) was used for 

high resolution NTSC color video image acquisition.  The camera was equipped with a 

zoom lens (C mount manual lens, 12.5 - 75 mm focal length, F1.8) and was mounted with 

 



 31

the lens 32 cm above the seedbed to provide a field of view of the seedline 11.43 cm 

wide by 10.16 cm long.  A camera shutter speed of 1/500 second was used to prevent 

blurring due to motion of the tractor and wind. 

A multifunction I/O board (Model CIO-DAS 1600, ComputerBoards, Inc.) was 

used to generate an asynchronous reset signal for the camera.  The Microsoft C Compiler 

Version 7.0 was used to develop all computer vision software and a Dell Dimension XPS 

Pro200n with 200 MHz Pentium Pro CPU was used for the computer. 

 

Color
Camera

R
G
B

CH. 1
CH. 2
CH. 3

INCARD

I/O Board
Pentium Pro

Processor GPB-2

AUXLUT

Encoder

256 x 240, 24 bits

Computer

Asynchronous
Reset

SensorWatchPrecision Spraying
System

RS - 232

Digital
output

Trigger
signal

Analog video

 

 
Figure 3.2 Schematic of the real-time machine vision system. 

  

The prototype robotic weed control system is shown in Figure 3.3.  The UC Davis 

Robotic Cultivator (Slaughter et al., 1997) was utilized as a guidance system (camera #1 

and Alloway cultivation tool in Figure 3.3) to center the prototype system over the row.  

 



 32

Each step, from field image acquisition to the weed control actuation, was synchronized 

using a heavy duty optical incremental encoder (Model HR6251000000A, Danaher 

Controls) attached to a gage wheel on the toolbar of the cultivation sled.  The cultivation 

sled was mounted on the three-point hitch of a tractor (Model 7800, John Deere Co.).  

The encoder generated a pulse whenever the tractor moved 0.13 mm forward.  The 

encoder output was 1000 pulses/revolution and in order to obtain higher resolution from 

the encoder, an intermediate pulley was used between the encoder and the axle of the 

gage wheel, Figure 3.4.  A new image was taken every 879 pulses (11.43 cm) by 

triggering an asynchronous reset signal to the color camera. 

A microcontroller (SensorWatch ,  TERN Inc., Davis, CA) was used to count 

the number of encoder pulses.  The location of the prototype was obtained by monitoring 

this counter.  The SensorWatch  is a C/C++ programmable 16-bit controller designed 

for data acquisition and control applications.  The SensorWatch  communicated via a 

RS-232 serial port to the computer containing the image processing boards.   

TM

TM

TM

 

 



 33

LAMP
LAMP

ACCUMU LATOR

55.88 cm

MANIFOL D

CAMER A
#2

CAMER A
         #1

TOOL
CLAMP

TOOL BAR

AL LO W AY
CULTIVATION TOOL

32 cm

34 

SIDE SHIELD

TUNNEL

VAL VE
AR RAY

SOIL LE VEL

O

 

 

Figure 3.3 The prototype robotic weed control system. 

 

GAGE  WHE EL

PULLEY

PULLEY

PULLEY

PULLEY

GAGE
WHEEL

ENCODER
AXLE

V-BEL T

V-BEL T

 

(a)  Side view. (b)  Front view. 
  

Figure 3.4  Gage wheel with encoder and intermediate pulley. 

 

 



 34

3.2.2 Outdoor image acquisition and uniform illumination device 

 The first step in a machine vision application is image acquisition.  Frequently the 

better the images are, the better the results obtained.  Most machine vision systems have 

been used in controlled environments with consistently positioned objects, good 

illumination, and objects easily distinguished from the background.  Outdoor image 

acquisition is quite different, especially for systems working with biological materials.  

Natural objects are not consistently positioned or aligned.  Their size and shapes vary 

widely.  Sunlight changes from time to time according to environmental conditions.  The 

color of the background (soil) also changes greatly from time to time and from field to 

field.  Plants are easily moved by wind.  

Uniform scene illumination is critical for successful color-based pattern 

recognition of plant species (Tian, 1995).  In this research, in order to eliminate many of 

the problems described above, a uniform illumination device was developed for the 

prototype using a specially designed cultivation tunnel which was attached to the frame 

of the ‘Alloway’ cultivation tool.   

The illumination tunnel was composed of a C channel beam (10.16 cm wide, 

60.96 cm long, and 0.48 cm thick), two dichroic halogen lamps (Iwasaki Electric Co. 

Model MR16CG, 12Vdc, and 50W), two flashed opal optical diffusers (Oriel Model No. 

48030, 5.08 cm diameter and 0.22 cm thick), two metal side shields and front and rear 

rubber flaps.  The side shields and rubber flaps were designed to block the sunlight and to 

minimize the amount of soil falling on top of the tomato plants during cultivation.  The 

two lamps were positioned at 30° relative to the optical axis of the camera, to provide 

uniform illumination in the camera’s field of view.   

 



 35

Figure 3.3 shows the uniform illumination device attached to the end of the UC 

Davis Robotic Cultivator. This device provided more uniform lighting and helped in 

acquiring better images.  The cultivation/image acquisition tunnel was used to reduce 

wind movement of plants.   

 

3.2.3 Precision spraying system 

 After distinguishing tomatoes from weeds, an image was divided into a spray grid 

of 8 rows by 18 columns (Figure 3.5) in order to determine which spray valves/nozzles 

were to be activated to spray weeds.  The 8 rows corresponded to the eight solenoid 

valves, and each image was divided into 18 columns to maximize the precision of the 

spray application.  This grid size gives each spray cell a size of 1.27 cm by 0.64 cm.  

Once the center of the weed leaves were located by the real-time computer vision system, 

the information was sent to the spray valve microcontroller. 

A valve byte, a sync byte, and a position byte were used to control the serial 

communication between the image processing computer and the microcontroller.  The 

valve byte was one byte of information indicating which valves the microcontroller 

opened or closed while the valve array was traveling over the corresponding weed 

location in an image.  The sync byte was used to tell the microcontroller the time at which 

a new picture was taken.  The position byte was information which specified the order of 

the valve bytes, indicated by column numbers (i.e., 1 - 18), and was used as a check 

against communication errors.   

 

 



 36

Valve #1

Valve #5

Valve #2

Valve #6

Valve #3

Valve #7

Valve #4

Valve #8

Column
 # 1

Column
# 2

Column
# 3

Column
# 17

Column 
# 18

...

Spray cell

#1

#2

#3

#4

#5

#6

#7

#8

Valve/Nozzle
 Array

Travel direction  

Figure 3.5 Spray grid of an image (Top view). 

 

 Figure 3.5 illustrates column numbers and corresponding valve numbers for the 

spray cells in an image.  The eight valves and nozzles were aligned in two rows (four in 

each row) due to physical constraints in order to allow the entire 10.16 cm wide seed line 

to be sprayed when they were opened at the same time.   

 

 



 37

3.3 Image analysis 

3.3.1 Image processing algorithm - Programs for field tests 

 Figure 3.6 shows a flowchart of the software for the entire robotic weed control 

system.  The software is composed of image acquisition, binarization of a raw color 

image, binary image pre-processing, plant recognition, and detection of weed location 

procedures.   

 

3.3.3.1 Image acquisition preparation  

 The serial communication link between the image processing computer and the 

microcontroller was used to synchronize image acquisition and weed mapping, Figure 

3.7.  At the beginning of the processing loop, the  microcontroller sent an ‘a’ character to 

the image processing computer to initiate the acquisition of a new picture.  The 

microcontroller subsequently sent an ‘a’ character whenever the tractor traveled 11.43 

cm  forward.   

Since the number of objects in an image varied, processing time for every image 

was not always constant.  Two conditions could cause the image processing computer to 

fail to finish processing the current image in time to acquire the next image: excessive 

tractor speed, or an unusually high number of weeds in the image. 

 



 38

Start

Initialize variables

Initialize & setup
8255 Register in A/D board

Initialize INCARD
and set to field mode

Check status of INCARD

Load Look Up Table
into AUXLUT card

Initialize serial ports
(COM1 & COM2)

Read synchronization byte
in COM1 serial buffer

Save images
in RAM drive?

Is there data in
COM1 serial buffer?

Start continuous image
processing loop

Use default
feature values?

Use signal from
SensorWatch? SW = 0

Display
results? DISPLAY = 0

Print out
feature values & valve

arrays ?
PRINT = 0

Load stored
image

Use live
image input?

Calculate perimeter and
border pixels

Find centroids of weeds

Send valve-byte to
SensorWatch

Find tomato protection zone

Calculate
major & minor axis

Calculate features
for each object

Make decision
using Bayes rule

Find median for tomato
y-coordinates

Send median
to COM2

Convex hull

Receive signal
from SensorWatch?

Generate Asynchronous
reset signal from A/D board

and send it to camera

Take a picture

No

Send signal to SensorWatch
telling that main computer

took an image

Binarize input image

Do pre-processing of
binarized image

Label objects

Remove background noise
and revise labeling

Generate areas and
centroids

Eliminate objects with big or
small areas and objects on

the very top or bottom
of an image

Calculate chain code

Subsample input image
columnwise

RAM drive =1?

Save input image
in RAM drive

Send position-byte
and valve-byte to

SensorWatch

No. of objects <
MAX_LABEL?

Send position-byte,
sync-byte & valve-byte

to SensorWatch

Check if 'z' is in
the buffer?

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Yes

Yes

No

RAM drive=0

No

RAM drive=1

SW = 1

DISPLAY = 1

PRINT = 1

No

No

SW = 1?

Yes

No

Yes

Go to outofsync()
subroutine

Go to download()
subroutine

Go to savenumber()
subroutine

End

No

DISPLAY =1?

Yes

No

PRINT =1?

Yes

Print out feature values &
valve-byte

No

Is any keyboard
hit?

No

Close serial
ports

Clear INCARD
path

End

Yes

Enter new
feature value

Enter stored
image file name

Display tomatoes in green
and weeds in red

Prepare   valve-byte based
on tomato & weed locations

Increase a variable
for total number of 'a'

Synchronization
byte = 'a' ?

Yes Yes

 

Figure 3.6 Flow chart for robotic weed control system software. 

 



 39

 

Microcontroller  Image Processing Computer
Send ‘a’.  → Take a new picture. 
   
Increase count for 
Sync byte to 
determine when to 
send the next ‘a’. 

 
← Send  

Position byte
Sync byte

 :  '0'
       :  Ascii value of 254

⎧
⎨
⎩

 
 
 
 
 
 
Open the 
corresponding valve 
to kill weeds. 

 
 
 
 
 
 
 

← Send  

Position byte
Valve byte 
Position byte 
Valve byte
Position byte 
Valve byte

Position byte 
Valve byte 
Position byte
Valve byte 

 '1'  for column 1
for column 1

'2'  for column 2
 for column 2

'3'  for column 3
 for column 3

...
'17'  for column 17

for column 17
 '18'  for column 18

for column 18

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

   
Send ‘z’ when the 
serial communication 
is out of 
synchronization. 

 
→ 

Go to outofsync( ) subroutine  download Valve 
bytes from microcontroller memory to compare 
those sent from the main computer. 

 

Figure 3.7 Serial communication between the image processing computer and the 
microcontroller. 

 

To prevent the microcontroller from getting out of synchronization and spraying 

incorrect weed locations, an additional  serial communication step was used before 

acquiring an image.  Figure 3.7 illustrates the serial communication between the image 

processing computer and the microcontroller.  The image processing computer checked 

its serial buffer and counted the number of ‘a’ characters present.  If more than one ‘a’ 

character were present in the buffer, the last ‘a’ character was used to take a picture and 

 



 40

the remaining ‘a’ characters in the buffer were used to send eighteen zeros (indicating no 

known weeds) to the microcontroller for each character.  

The main computer sends a ‘0’ position byte and an ASCII value of 254 as a sync 

byte to the microcontroller after reading an ‘a’ character from the serial buffer.  The sync 

byte was used by the spray valve microcontroller to determine the exact seedbed location 

where the image was acquired.  If the prototype has advanced part way into a new image 

field of view when the sync byte is received, then the columns in the spray grid passed by 

are automatically filled with zeros (indicating no known weeds).  This process allowed 

the two computer systems to maintain synchronization during field operation.   

The sync byte and position byte were used by the microcontroller to detect 

communication errors.  If a communication error occurred, a ‘z’ character was sent to the 

image processing computer, and the image processing computer stopped processing and 

downloaded the valve array data, which was stored in the microcontroller memory to 

allow the operator to diagnose the error. 

 

3.3.3.2 Image acquisition 

An asynchronous reset signal was used to acquire an image at a specified instant 

in time from a moving vehicle in order to obtain an image at the desired region of the 

seedline.  When the INCARD received an active low TTL signal from the I/O board 

which was at least 70 µs long (Figure 3.8 (a)), it reset the camera by sending an 

asynchronous reset signal (Figure 3.8 (b)) and counted three NTSC video field times.  

The first video field was not acquired due to unwanted accumulation on the CCD 

(Charge Coupled Device) between prolonged triggers.  The second and third fields were 

 



 41

captured from the camera and the INCARD retrieved the second field.  Thus, there was a 

one field delay in image acquisition from the time the asynchronous reset signal was sent.   

 

+5V

1.7 V
0 V

Active 
Range

+5V

1.7 V
0 V

Active 
Range

1 s MIN.µ70 s MIN.µ  

 

(a) Trigger signal from I/O board  
      to INCARD. 

(b) Asynchronous reset signal  
      from INCARD to camera. 

  
Figure 3.8 Asynchronous reset signal. 

 

 Upon receiving an asynchronous reset signal from the I/O board, the image 

processing computer sent a position byte and a sync byte to the microcontroller telling it 

that it had received the asynchronous reset signal to synchronize them.  To acquire an 

image of the seed line, the red, green, and blue RS-170 interlaced video signals were 

input to the INCARD.  The INCARD digitized a single field of the interlaced video 

picture and subsampled the input image columnwise to eliminate blurring due to camera 

motion.  This process took 33.0 ms (16.7 ms for acquiring one field and 16.7 ms for 

subsampling) and allowed saving of 16.7 ms for acquiring an image.  If a whole video 

frame (512 pixels by 480 pixels) image were taken and every row and column 

subsampled, the image acquisition would take 49.6 ms (33.3 ms for acquiring a frame 

and 16.3 ms for subsampling).  The actual field of view of the camera was about 11.43 

cm x 10.16 cm and was digitized into 256 x 240 pixels.   

 



 42

3.3.3.3 Color image segmentation with Bayes’ decision rule 

After a color image was digitized and stored as a 24 bit color image in computer 

memory, the image was segmented into plant and non-plant regions using color 

information such as hue, saturation and intensity.  Color images provide more 

information than gray scale images.  Even though the gray level of two objects are 

similar, their color can be different. Since all image processing steps in this study were 

conducted on binary images, image segmentation was an essential preliminary step.  

In order to make binary images,  many methods could be used such as 

thresholding, supervised learning, statistical classification, and unsupervised learning.  In 

this research, a statistical classification method (Bayes’ minimum-risk classifier) was 

applied to build a color look-up-table (LUT) which was loaded into the AUXLUT card 

where it was used for real-time conversion of the color image to a binary image (white 

for plant leaves and black for background). This process took less than 3 ms using the 

AUXLUT card in a Dell Dimension XPS Pro200n computer with a 200 MHz Pentium 

Pro processor (please refer to chapter 4.4).   

Utilizing a computer look-up-table is a common way to implement high-speed 

binary conversion from a color image.  There are different ways to make LUTs such as 

using red (R), green (G), and blue (B) color components, normalized red (r), green (g), 

and blue (b) color components, which are defined in Eq. (3.1) - (3.3), or hue (H), 

saturation (S), and intensity (I) components.  Hue is defined as an attribute associated 

with the dominant wavelength in a distribution of light frequencies.  Hue represents 

dominant color as perceived by an observer.  Saturation refers to relative purity or the 

amount of white light mixed with a hue. Intensity represents the perceived luminance.  H, 

 



 43

S, and I are transformed from R, G, and B using Eq. (3.4) - (3.6) (Gonzalez and Woods, 

1993: p. 234).    

r
R

R G B
 =  

 +   +  
 

(3.1)

g
G

R G B
 =  

 +   +  
 

(3.2)

b
B

R G B
 =  

 +   +  
 

(3.3)

H = cos-1
[ ]1

2
(R G R B

R G R B G B

 -  ) +  (  -  )

[( - )  +  ( - )( - )]2 1

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

/2  

(3.4)

S = 1 - 
3

(
[min( ,

R G B
R G B

 +   +  )
 ,  )]  

(3.5)

I = 
1
3

(R G B +   +  )  
(3.6)

 

A preliminary study was conducted to determine which color space, components, 

or number of classes produce a LUT with the best segmentation performance.  In order to 

investigate LUT performance, 10 training images and 15 validation images were 

randomly chosen among the images acquired in 5 different commercial processing 

tomato fields in northern California.  From the 10 training images, sample pixel values of 

all components in RGB, rgb, and HSI color spaces were obtained for three different 

classes, tomato plants, weeds, and background.  Table 3.1 shows the number of pixels for 

each class from these training images.   

 

 

 

 

 



 44

Table 3.1  Number of pixels used to evaluate LUT performance. 

Class Number of pixels 
Tomato  3242 
Weed 6155 

Background 8583 
 

Histograms of these pixels are shown in Figures 3.9 - 3.11 for the three different 

color spaces.  In these histograms, we can see the relative frequency of pixels of each 

class for the different components of each color space. This information can be used to 

help  identify which components might be useful in distinguishing one class from 

another.   

From the histogram in RGB color space (Figure 3.9), there was considerable  

overlap between plant (tomato and weed) and background classes,  and there was 

complete overlap between tomato plants and weeds.  This implied that a simple color 

classifier could not be used to distinguish tomato plants from weeds.  The least overlap 

between plant and soil occurred in the R component, then in the G component, and was 

greatest in the B component.  We can see that the blue channel had a lower intensity than 

red and green channels. 

In rgb color space (Figure 3.10), there was also considerable overlap in the b 

component between plants (tomato plants and weeds) and background, less overlap in the 

r component, and separation in the g component between plants and background.  In this 

color space, tomato plants and weeds were also completely overlapped.   

In HSI color space (Figure 3.11), the hue component was a good characteristic to 

use in distinguishing plants from background.  However, in this color space, tomato 

plants and weeds were also completely overlapped.   

 



 45

Figures 3.12 - 3.14 show 2-D and 3-D scatter plots of a randomly chosen 100 

pixel sample for each class (tomato plants, weed, and background) in different color 

spaces.  In RGB color space (Figure 3.12), there was a separation between plants and 

background in R-G plane.  However, in the R-B plane and B-G plane, all three classes 

were overlapped.  In rgb color space (Figure 3.13), separation lines could be drawn in all 

three planes.  This was because there existed a color difference between plants and 

backgrounds, not an intensity difference.  In rgb color space, it only takes two 

components to know all 3 components, because r + g + b = 1.  Since there was a 

separation in R-G plane, any two components of r, g, and b also shown this separation 

since the intensity was not important.       

In HSI color space, there was no distinction between plants and background in the 

I-S plane (Figure 3.14 (d)).  This shows that the predominant characteristic in 

distinguishing plants and background is hue.   

 



 46

0

40

80

120

160

0 50 100 150 200 250

RED INTENSITY LEVEL

C
O

U
N

T

Background-RED
Weed-RED
Tomato-RED

 

(a)  R. 
 

0

40

80

120

160

0 50 100 150 200 250

GREEN INTENSITY LEVEL

C
O

U
N

T

Background-GREEN
Weed-GREEN
Tomato-GREEN

 
(b)  G. 

 

0

40

80

120

160

200

0 50 100 150 200 250

BLUE INTENSITY LEVEL

C
O

U
N

T

Background-BLUE
Weed-BLUE
Tomato-BLUE

 
(c)  B. 

 
 

Figure 3.9  Histogram of R, G, and B component of training images. 

 



 47

0

100

200

300

400

500

600

0 0.16 0.32 0.48 0.64 0.8 0.96

red INTENSITY LEVEL

C
O

U
N

T

Background-red
Weed-red
Tomato-red

 
(a)  r. 

 

0

200

400

600

800

1000

0 0.16 0.32 0.48 0.64 0.8 0.96

green INTENSITY LEVEL

C
O

U
N

T

Background-green
Weed-green
Tomato-green

 
(b)  g. 

 

0

100

200

300

400

500

0 0.16 0.32 0.48 0.64 0.8 0.96

blue INTENSITY LEVEL

C
O

U
N

T

Background-blue
Weed-blue
Tomato-blue

 
(c)  b. 

 
 

Figure 3.10  Histogram of r, g, and b component of training images. 

 



 48

0

100

200

300

400

500

600

0 50 100 150 200 250
HUE LEVEL

C
O

U
N

T

Background-Hue
Weed-Hue
Tomato-Hue

 
(a)  Hue. 

 

0
20
40
60
80

100
120
140
160
180
200

0 50 100 150 200 250

SATURATION LEVEL

C
O

U
N

T

Background-Saturation
Weed-Saturation
Tomato-Saturation

 
(b)  Saturation. 

 

0

20

40

60

80

100

120

140

0 50 100 150 200 250
INTENSITY LEVEL

C
O

U
N

T

Background-Intensity
Weed-Intensity
Tomato-Intensity

 
(c)  Intensity. 

 

Figure 3.11  Histogram of hue, saturation, and intensity component of training images. 

 



 49

 

0

50

100

150

200

250

0 50 100 150 200 250

RED

    

 R

G

  B

 

(a)  R vs. B. (b)  R vs. G vs. B. 

 

0

50

100

150

200

250

0 50 100 150 200 250

RED

          

0

50

100

150

200

250

0 50 100 150 200 250

BLUE

 

(c)  R vs. G. (d)  B vs. G. 

 

Figure 3.12  Scatter plots of tomato plants ( ), weed (x), and background (z) pixel 
samples in R - G - B color space. 

 

 



 50

 

b

0.0

0.1

0.2

0.3

0.4

0.2 0.3 0.4 0.5 0.6

r

    

r
g

b

 

(a)  r vs. b. (b)  r vs. g vs. b. 

 

g

0.2

0.3

0.4

0.5

0.6

0.7

0.2 0.3 0.4 0.5 0.6

r

          

g

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4

b

 

(c)  r vs. g. (d)  b vs. g. 

 

Figure 3.13  Scatter plots of tomato plants ( ), weed (x), and background (z) pixel 
samples in r - g - b color space. 

 

 



 51

 

0

50

100

150

200

250

0 50 100 150 200 250

Hue

          

Hue
Sat

Int

 

(a)  Hue vs. Intensity (b)  Hue vs. Saturation vs. Intensity 

 

 

0

50

100

150

200

250

0 50 100 150 200 250

Hue

          

0

50

100

150

200

250

0 50 100 150 200 250

Intensity

 

(c)  Hue vs. Saturation. (d)  Intensity vs. Saturation. 

 

Figure 3.14  Scatter plots of tomato plants ( ), weed (x), and background (z) pixel 
samples in Hue - Saturation - Intensity color space. 

 

 

 



 52

3.3.3.4 Look-Up Table construction for image binarization 

 A look-up table (LUT) is a list of output values for the corresponding different 

inputs.  By using LUT, many computational steps can be saved at a cost of additional 

memory usage.  The AUXLUT card has the ability of taking 16 bits from three different 

input images (Figure 3.15) and producing an 8 bit output image in less than 3 ms making 

it very suitable for real-time use.   

 

Red OutputGreen Blue

LUT 2

LUT 1

Select
LUT 1 or 2

Source Destination

AUXLUT

GPB-2
8 bit 8 bit 8 bit

16 bit

16 bit

8 bit

 

Figure 3.15 Structure of AUXLUT card. 

Since the AUXLUT card takes only a 16 bit input, the 24 bit R, G, and B inputs 

needed to be reduced to 16 bits.  An input of  5 bits of R, 6 bits of G, and 5 bits of B was 

chosen due to the fact that the green component was more important in dealing with plant 

objects and more sensitive to human eyes. 

 The following pseudo code generates R, G, and B from a single LUT address, 

which increments from 0 to 65535 (SHARP, 1994).   

R =   (Double) ( (((address << 17) >> 31) << 7) 
      | (((address << 20) >> 31) << 6) 
      | (((address << 23) >> 31) << 5) 
      | (((address << 26) >> 31) << 4) 
      | (((address << 29) >> 31) << 3) ); 

(3.7) 

 



 53

G =   (Double) ( (((address << 16) >> 31) << 7) 
 | (((address << 19) >> 31) << 6) 

      | (((address << 22) >> 31) << 5) 
      | (((address << 25) >> 31) << 4) 
      | (((address << 28) >> 31) << 3) 
      | (((address << 31) >> 31) << 2) ); 

(3.8) 

B =   (Double) ( (((address << 18) >> 31) << 7) 
      | (((address << 21) >> 31) << 6) 
      | (((address << 24) >> 31) << 5) 
      | (((address << 27) >> 31) << 4) 
      | (((address << 30) >> 31) << 3) ); 

(3.9) 

  

When R and B were entered into the LUT as 5 bits, 3 bits were lost.  Thus, new R and B 

values were obtained by dividing by 8 or by shifting R value three bits to the right (= R 

>> 3).  Likewise, a new G value was obtained by dividing by 4 (= G >> 2).  If we took 

integer values of R, G, and B, then new R', G', and B' values were: 

R' = Int(R / 8) x 8 (3.10) 
G' = Int(G / 4) x 4 (3.11) 
B' = Int(B / 8) x 8 (3.12) 

 

The maximum possible integer value of R' and B' was 248 (= Int(255 / 8) x 8) since the 

maximum value of R and B was 255.  The maximum possible integer value of G' was 252 

(= Int(255 / 4) x 4). 

All possible combinations of red, green and blue components of a pixel were then 

converted into hue, saturation and intensity components using Eq. (3.13) - (3.15). 

                   Intensity = 
R'  +  G'  +  B'

3
⎛
⎝⎜

⎞
⎠⎟  x 255.0 / 249.0 + 0.5                                 (3.13) 

 

 



 54

Saturation = 
0 0

255 0

.

.

if Intensity <  16.0

 x 1.0 -  
Min(R' ,  G' ,  B' )

Intensity
 +  0.5 Otherwise

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

       (3.14) 

                                                Hue = 
HueTemp

360.0
 x 255.0                         

(3.15) 

Where HueTemp =  

0 0

90 0
2

.

.

if Saturation <  16.0 or 
Intensity <  16.0

Otherwise

- tan
R'- G'-B'

(G'-B'+0.01) / 3
x

180.0
+ Factor +1.5 Factor =  

180.0 if B'  >  G'
0.0 Otherwise  -1⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎩

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪ π

 

For calculating Intensity, the value of 249 was used to scale up to 255, since the 

maximum value of (R' + G' +B') / 3 would be 249 (= (248 + 252 + 248) / 3).   

For binarization, hue, saturation, and intensity components of pixel values were 

used as the input feature vector x in the Bayesian discriminant function (Eq. (3.17)) for 

the LUT since they showed great possibility for binarization. (This choice also turned out 

to be the best one according to the analysis of LUT performance in Chapter 4.1.) The 

estimates of the mean, mk and the covariance, Σ k of hue, saturation, and intensity 

component were also calculated to be used as inputs to the discriminant function.   

x =                                                (3.16) 
Hue

Saturation
Intensity

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 



 55

dk (x)  = -
1
2

{  + ln |( ) ( )x m x m -   -  k
T

kΣ −1
k Σ k |} + ln P(ωk) 

(3.17)

 

After calculating d k(x) for all input feature vectors, a class was assigned to each feature 

vector by the following decision rule.  For binarization of a raw color image, there were 

only two classes, i.e., plant leaf or background. 

Assign x to  ωi if di(x) > dk(x),     ∀k ≠ i (3.18)
 

 The resulting LUT was written as a SHARP 8 bit image format (512 x 128) in 

raster scan order, from the top left to the bottom right.  The contents of the LUT at each 

address was set to 0 if x was assigned to background and to 255 if x was assigned to 

plant.  Thus, the LUT took  R, G, B as inputs and produced a binary image.  For a given 

pixel with R, G, B components, a corresponding address in the LUT was obtained using 

Eq. (3.7) - (3.9), and the value at the address was read from the LUT as an output to the 

binary image.  An example is shown in Figure 3.16.  If a pixel with R = 8, G = 4, and B = 

0 goes through the LUT, an address obtained is 5 (Eq. (3.7) - (3.9)). Then, the output 255 

in this example, is read from the corresponding pixel location (i.e., row 0 and column 5). 

 

 



 56

0 2 5 6 7 81 51151050943

0 255

R (8)
0 1 0 0 0

G (4)
0 0 0 1 0 0

B (0)
0 0 0 0 0

255 255

255 255 255 255 255

255255

0 0 000 00

0

0 0

000 00 000 0

0

255255255 255 255 2550 00 00 0 00255

2550

0

507 5085069

.

.

.

.

.

. 655356553465023 65024 65025 65026 65027

address = 5

address

0

 

Figure 3.16  An example of LUT reading. 

 

Typical field images acquired under different illuminations, stages of growth, or 

times of day, were used to make a LUT for binarization.  The R, G, B values of each 

object class (e.g., plant leaves or background) were obtained from these images to 

calculate representative mean and covariance matrices for both classes.   

 

 



 57

3.3.3.5 Look-up table and image quality 

 Building a good LUT is a fundamental and important step in pattern recognition  

since binary images are used as the basis for all subsequent image processing steps.  The 

better a LUT is, the less image processing steps are needed.  Better binary images 

produce better shape recognition results.  In this chapter, LUT performance was 

evaluated using binary images created using different LUTs based upon different color 

spaces and using 2 or 3 input classes (i.e., 2 classes: plants and background, or 3 classes: 

tomato plants, weeds, and background).   

 

         

(a)  Color image (b)  Plant-only image (c)  Background-only image

Figure 3.17  Separation of plant-only and background-only images from a color image. 

 

The first step was to make a plant-only image and a background-only image from 

a color image taken in a commercial processing tomato field, Figure 3.17. In this step, 

Adobe Photoshop (Adobe systems, Inc., version 4.0) was used to manually separate 

plants from background to create the images shown in Figure 3.17 (b) and (c). It is a 

tedious, time consuming and difficult process to manually classify every pixel in an 

image containing 61440 pixels (plant and background together). This process could be a 

 



 58

source of error since it was difficult to separate all plant pixels from the background and 

the author tried to make as few errors as possible in this step.  

The number of plant pixels in the plant-only image were counted and denoted as 

n1.  The number of non-black background pixels in the background-only image were also 

counted and denoted as n2.  These plant-only and background-only images were passed 

through a set of LUTs and binary images were created.  The plant-only binary image was 

used to evaluate the number of plant pixels correctly passed through LUT.  The number 

of non-black pixels in the segmented plant-only binary image were counted and denoted 

as n3.  The background-only binary image was used to evaluate the number of non-black 

background pixels incorrectly passed through the LUT.  The number of non-black pixels 

in the segmented background-only image were counted and denoted as n4. 

A total of 12 LUTs (Table 3.2) were made from 10 training images using different 

numbers of input classes in different color spaces.  The names of LUTs were assigned 

according to the color components and number of input classes used.  For example, 

LutRGBc2 was a LUT made with R, G, and B components in RGB color space and two 

input classes: plants (tomato plants and weeds together) and background, whereas 

LutRGBc3 was made with three input classes: tomato plants, weeds, and background.   

The LUT, Lutrgc3, was a LUT made with r and g components and three input classes 

(tomato plants, weeds, and background).   

 Note that when making a LUT in rgb color space, if all r, g, and b components 

were used as inputs to LUT, then the covariance matrix became singular (r + g + b = 1) 

so that there was no inverse for the covariance matrix, and thus Bayes’ rule (Eq. (2.11)) 

 



 59

could not be applied to build a LUT.  In this case only the r and g components were used 

to build a LUT instead of r, g, and b components. 

 

Table 3.2  List of LUT names used to determine performance. 

Component  
used 

2 Class  
(Plant, Background) 

3 Class  
(Tomato plant, Weed, Background) 

R, G, B LutRGBC2 LutRGBC3 
R, G LutRGC2 LutRGC3 
r, g LutrgC2 LutrgC3 

H, S, I LutHSIC2 LutHSIC3 
H, S LutHSC2 LutHSC3 

H LutHC2 LutHC2 
 

The values of n1 - n4 for each LUT were used to evaluate its performance according to its 

total error rate (Eq. (3.21)).  The LUT error has two components, the % of plant pixels 

not correctly classified (Eq. (3.19)) and the % of background pixels not correctly 

classified (Eq. (3.20)).  Ideally the total error rate would be zero. 

 

Plant error rate = 
( )n n

n
1 3

1

 -  
 x 100 (%) 

(3.19) 

Background error rate = 
n
n

4

2
 x 100  (%) 

(3.20) 

Total error rate = Plant error rate + Background error rate 

           = 
( )n n

n
n
n

1 3

1

4

2

 -  
 +   x 100

⎡

⎣
⎢

⎤

⎦
⎥  (%) 

(3.21) 

 

 

 



 60

The LUT performance was evaluated by two methods.  The first method (Method 

I) was to use the binary images from LUTs with no operation done to them.  The second 

method (Method II) was to evaluate LUTs with single point noise (one pixel noise in the 

background) removed from the background-only binary images.  This method was used 

since a single point noise could be easily removed by the Sharp board.        

 

3.3.3.6 Binary image pre-processing 

After color segmentation, the binary image was enhanced through a series of 

image processing steps including erosion, dilation, shrinking and swelling to remove any 

digitization noise and to smooth the object edges to provide a more accurate shape for 

leaf recognition.  More specifically, the following series of operations were done in the 

order listed in Table 3.3.  This combination of operations was chosen among other 

combinations by trial and error to get the most accurate shape.  Then, all objects in the 

image were labeled from 1 to the number of objects for further processing. 

 

Table 3.3  Pre-processing steps for a binary image. 

Operation Connectedness 
shrink 4 

delete isolated points - 
binary erode 8 
binary dilate 8 

swell 8 
shrink 4 
swell 8 
shrink 4 
swell 8 
shrink 8 

 

 



 61

Figure 3.28 (b) page 122, shows the segmented and enhanced field image of a tomato 

seedling and weeds.   

 

3.3.3.7 True leaf recognition: Curvature calculation 

In an effort to recognize tomato seedling true leaves, the curvature of the leaf 

boundaries was studied.  True leaves of tomato plants usually have some notches 

(concave regions) in their boundaries (Figure 3.18), while most of the weed leaves are 

round and convex.  The curvature at a point P is defined as the value of the derivative of 

the polar angle of the unit tangent vector with respect to arc length (Bers, 1969).  As 

shown in Fig. 3.19, the curvature κ , at a point P is calculated using Eq. (3.22). 

 

Figure 3.18  True leaves of tomato plant. 

 

κ
θ

 =  
d
ds

 
(3.22)

where θ  = polar angle of the unit tangent vector in radians, and s = arc length. 

θ1  = tan-1 y y
x x

2

2 1

 -  
 -  

1⎛
⎝
⎜

⎞
⎠
⎟ (rad) 

 

(3.23)

θ2 = tan-1 y y
x x

3

3 2

 -  
 -  

2⎛
⎝
⎜

⎞
⎠
⎟ (rad) 

(3.24)

 



 62

 

κ  = 
θ θ2  -  

S
1

∆
 x 1000 

 

(3.25)

where (xi, yi) = average of coordinates at segment i, 

     θi  = tangent angle at segment i (rad), and  

     ∆  = arc length (pixel) S

 

 The curvature was calculated using a discrete version of Eq. (3.22) from the 

boundary pixels of each object using a  segment and gap as shown in Eq. (3.23) - (3.25). 

A pixel on the bottom right of the object was used as the starting pixel and the curvature 

was calculated in a counterclockwise direction along the boundary.  The segment (SEG) 

was defined as a group of contiguous pixels used to estimate the average value of the  x 

and y coordinates of a boundary point using a boxcar smoothing operator.  The gap 

(GAP) was defined as the number of boundary pixels between two consecutive segments 

and was used to tune the discrete derivative to accentuate concave regions of a desired 

size.  In an object, the point P was repeatedly moved by an offset (C_OFFSET) along the 

leaf boundary to calculate the curvature along the entire boundary until all boundary 

pixels were used.  The default values used for SEG, GAP, and C_OFFSET were 3, 5, and 

5 respectively.  These default values were found by trial and error in order to accurately 

find the leaf boundary curvature and to minimize the effect of digitization noise at the 

boundary.  The 1000 multiplicative factor in Eq. (3.25) was used to enlarge the curvature 

value.   

 

 



 63

Segment 1

Segment 2

Segment 3

Gap 1

Gap 2

+ x

+ y

θ1

θ2

: Segment pixel

: Gap pixel

: Avg. of a segment

θi   : Polar angle
      : Arc length

θ2 - θ1κ  =

Leaf
Boundary

P

∆ S∆ S

(x1, y1)

(x2, y2)

(x3, y3)
∆ S

 

 

Figure 3. 19 Curvature Calculation. 

 

 Using curvature, the following features were calculated for each leaf in order to 

build a Bayesian classifier to distinguish tomato plants and weeds: arc length (S), polar 

angle of the tangent vector (θ), occurrence of negative curvature (NEG), maximum 

curvature (MAXC), minimum curvature (MINC), average curvature (AVGC), average of 

absolute value of curvature (ABSAVGC), standard deviation of curvature (STDEVC), 

sum of radius of  curvature (SUMINV), sum of absolute value of radius of curvature 

(ABSUMINV), ratio of area to average of the absolute values of curvature (ATC), ratio 

of compactness to average of the absolute values of curvature (CTC), ratio of elongation 

to average of the absolute values of curvature (ETC), ratio of difference of MAXC & 

MINC to sum of MAXC & MINC (MTMC), and ratio of perimeter to average of the 

absolute values of curvature (PTC). A factor of 100 was multiplied in calculating CTC 

and ETC to increase their magnitude.   

 



 64

   

ATC = 
AREA

ABSAVGC
 

(3.26)

CTC = 
100 CMP

ABSAVGC
 

(3.27)

ETC = 
100 ELG

ABSAVGC
 

(3.28)

MTMC = 
MAXC -  MINC
MAXC +  MINC

 
(3.29)

PTC = 
PERIM

ABSAVGC
 

(3.30)

SUMINV = 
1
κ∑  

(3.31)

 

Figures 3.20 and 3.21 show sample curvature feature values for standard shapes and 

tomato cotyledon, tomato true leaf and cotyledon of nightshade weed, respectively. 

 



 65

                          
Circle  Triangle Rectangle 1 Rectangle 2 Star 

 

0

100

200

0 10 20 30 40 50

Sample index

C
ur

va
tu

re

          

0

100

200

0 10 20 30 40 50

Sample index

C
ur

va
tu

re

 
(a)  Circle. (b)  Triangle. 

 

0

100

200

0 10 20 30 4

Sample index

C
ur

va
tu

re

0

          

0

100

200

0 10 20

Sample index

C
ur

va
tu

re

30

 
(c)  Rectangle 1. (d)  Rectangle 2. 

-200

-100

0

100

200

0 10 20 30 40 50

Sample index

C
ur

va
tu

re

 
(e)  Star. 

 
Figure 3.20  Sample curvatures of different shapes. 

 



 66

 

0

100

200

0 5 10 15
Sample index

C
ur

va
tu

re

 

(a) Cotyledon of tomato plant. 

 

                                                                                   

-200

-100

0

100

200

0 10 20 30 40

Sample index

C
ur

va
tu

re

               

0

100

200

0 10 20 30 4

Sample index

C
ur

va
tu

re

0

 

(b) True leaf of tomato plant. (c) Cotyledon of nightshade weed. 
  

 

Figure 3.21  Sample curvatures of tomato cotyledon, tomato true leaf and  
nightshade cotyledon. 

 



 67

3.3.3.8 Partially occluded leaves: Watershed algorithm 

Occlusion has been one of the most difficult obstacles in machine vision since 

occluded objects are difficult to identify.  Multiple occluded objects appear as one object 

in the segmented binary image, producing an unusual set of feature values. Figure 3.22 

shows an example of unrecognized tomato leaves due to occlusion.  Occluded objects 

need to be separated before extracting their features.  One of the faster and more widely 

used methods to segment occluded objects is the watershed algorithm.   

 

         
 

(a)  Occluded tomato cotyledons. (b) Unrecognized cotyledons shown in red. 
 

Figure 3.22 Incorrectly classified tomato cotyledons due to occlusion. 
 

The watershed method was developed in 1977 and many variations of the method 

have been tried.  The watershed method can be used on either binary or gray scale 

images.  In this research, a binary image was used to separate partially occluded plant 

leaves as illustrated in Figure 3.23.  The algorithm used in this research was based on the 

algorithm by Vincent and Soille (1991).  The basic idea for this algorithm is that a digital 

image is considered as a topographical surface and the value of each pixel represents the 

 



 68

elevation at that point.  An imaginary hole is pierced at each regional minimum (Figure 

3.23) in the topographical surface and then the entire surface is “flooded” with water 

through the imaginary hole.  Water fills the surface beginning the lowest regional minima 

and a “dam” is built at the point where two different regional minima would merge.  

After the entire image is “filled with water”, the “dams” provide separation lines for each 

regional minima.  These “dams” are called the watersheds of the image.  Each regional 

minimum is called a “catchment basin”.   

   

Original image Distance function

Separation of the
overlapping components

Minima

Catchment
basins

 

Figure 3.23 Binary separation by watersheds of the opposite of the distance function. 
(Source: Vincent and Soille (1991)) 

 
 

 



 69

 

                  
 

(a) Occluded tomato leaves. (b) Binary image. 
 

                  
 

(c) Distance function. (d) Level lines of distance function. 
 

                 
 

(e) Watershed lines generated  
by the algorithm. 

(f) Correctly recognized tomato leaves  
shown in green. 

 
 

Figure 3.24  Example of segmentation of overlapped leaves by the watershed method. 

 



 70

Figure 3.24 shows an example of the watershed algorithm applied to occluded 

leaves.  The application of the watershed method starts with making a distance function.  

The distance function (Figure 3.24 (c)) is defined as a function which associates every 

pixel value with a value that is inversely proportional to its distance to the background.  

In this research, the distance from the background was calculated for every pixel in an 

object and the result of subtraction of the distance from 255  was stored in that pixel as 

the distance function for that pixel.  Thus, the farther a pixel is from the background, the 

darker (“lower”) the pixel is.  Figure 3.24 (d) shows the level lines of the distance 

function. 

 

Make distance function

Sort pixel values in the increasing
order of their gray value

Calculate a cumulative frequency
distribution

Flood

Build dam when two catchment
basins merge

 

Figure 3.25  Processing steps in the watershed algorithm. 

 

  The next step is to sort all pixels in an image in the increasing order of their gray 

values and calculate a cumulative frequency distribution.  This step assigns each pixel to 

 



 71

a unique cell in the stored array and allows direct access to the pixels at a given gray 

level h.  The final step is the flooding step.  In this step, holes are punched in the regional 

minima and the catchment basins are flooded from below by letting water rise from the 

holes at a uniform rate across the entire image.  When the rising water in distinct 

catchment basins would merge, a dam is built to prevent merging.  The dam corresponds 

to a watershed line and a particular value (pixel value of 0 for this research) is assigned to 

the pixels where the dam is built.    Figure 3.24 (e) shows watershed lines generated by 

the watershed algorithm.  Figure 3.24 (f) shows correctly recognized tomato cotyledons 

shown in green after separation by the algorithm.  In this figure, some of the true leaves 

are still incorrectly recognized as weeds.  However, 4 leaves unrecognized in Figure 3.22 

(b) are now recognized. 

The watershed method has two drawbacks: over-separation of leaves and being 

too time-consuming.  Over-separation is excessive cutting, where a single object is cut 

into pieces.  Beucher and Meyer (1993) observed that “the over segmentation produced 

by direct construction of the watershed line is due to the fact that every regional 

minimum becomes the center of a catchment basin.”  More specifically, regional minima 

are sometimes made of two or three connected components (for example, in Figure 3.26 

(c), there are two separate regional minima (a pixel value of 253) as connected 

components in one leaf), which produces over separation.  Figure 3.26 shows an example 

of over-cutting due to disconnected local minima.  When a distance is calculated between 

a pixel from the local minima and the background, its distance depends on the structure 

of the object.  The fifth row in Figure 3.26 (c) has 6 pixels and there are no pixels with a  

value of 253, disconnecting the minima.  If there was a pixel in dotted square-a ( a ) 

 



 72

position, the pixel 254 in dotted square ( 254 ) would become 253, or if there was a pixel in 

square-b position ( b ), the pixel 254 in square ( 254 ) would become 253.  In either of 

these two cases, the object would have one connected local minima and would not be 

over cut.  This boundary noise can have a significant impact on over cutting.    

 

 

        
2 5 5 2 5 42 5 4 2 5 52 5 4

2 5 52 5 52 5 5 2 5 5

2 5 4 2 5 42 5 42 5 5 253 2 5 5

2 5 52 5 52 5 5 2 5 5

2 5 52 5 4 2 5 4 2 5 42 5 42 5 5 253

2 5 5 2 5 42 5 4 2 5 52 5 4

253 2 5 42 5 42 5 5 2 5 4 2 5 5
2 5 4 2 5 42 5 42 5 5 253 2 5 5

2 5 4 2 5 42 5 42 5 5 2 5 4 2 5 5

253 2 5 42 5 42 5 5 2 5 4 2 5 5
2 5 52 5 4 253 2 5 42 5 42 5 5 253
2 5 52 5 4 2 5 4 2 5 42532 5 5 253

a

b

 

(a) Color image.     (b) Over separated 
          binary image. 

(c) Distance function of the 
indicated leaf in (b). 

   
Figure 3.26  Example of over segmentation due to disconnected local minima. 

 

A classical solution to avoid over cutting consists of slightly smoothing the 

distance image by performing a morphological opening operation after the distance image 

is made but before the flooding step.  Opening is defined as erosion followed by dilation 

and is basically a smoothing operation.  Applying the opening operation to the local 

minima increases the chance that over cut objects will contain only a single minima 

eliminating the over cutting problem.  This application of opening was the first modified 

algorithm attempted to remove over cutting.   

In order to obtain a larger connected local minima, the opening operation was 

applied to those pixels in the distance image with values up to a certain “height” (e.g., 

 



 73

hmin + k, where hmin is a minimum “height” or value in the distance image for an object 

and k is found by trial and error).  The area resulting from the opening operation was 

used as a new local minima.  After performing opening, the pixel locations of the opened 

area were given the pixel value of hmin + k.  Then, the distance function was re-sorted by 

increasing order of gray level, the cumulative frequency distribution of the distance 

function was calculated again and the original watershed algorithm was applied.        

This modification is illustrated in Figure 3.27 using the tomato cotyledon shown 

in part a.  Figure 3.27 (b) shows the distance image of the cotyledon in part a.  The 

symbols of 1, 2, 3, 4, and 5 were used for the heights of 251, 252, 253, 254, and 255 

respectively.  Figure 3.27 (c) shows two disconnected local minima (hmin = 251), which 

would cause over cutting in the original watershed algorithm.  If these minima were 

opened once (Figure 3.27 (d)), the local minima were removed, failing to create a single 

connected local minima.  Thus, the opening was performed after defining the local 

minima as those pixels in the distance image with values of 251 and 252.  Figure 3.27 (e) 

shows the local minima as defined by pixels with values of 251 and 252 and Figure 3.27 

(f) shows the area resulting from application of the opening operation to the local minima 

shown in Figure 3.27 (e).  The resulting area shown in Figure 3.27 (f) still contained two 

disconnected (4 connectedness) minima.  Thus, the opening was performed once again 

after defining the local minima as those pixels in the distance image with values of 251, 

252, and 253.  Figure 3.27 (g) shows the local minima as defined by pixels with values of 

251, 252 and 253.  Figure 3.27 (h) shows the area resulting from application of the 

opening operation to the local minima shown in Figure 3.27 (g), which was now a 

smoothed single larger connected local minima.  For this object the area resulting from 

 



 74

the application of the opening operation to the new local minima as defined by pixels 

with values up to 253 (hmin + 2) prevented the object from being over cut.  In this 

example the MJX of the cotyledon was 35.2 and the minimum height was 251. 

Since long objects (e.g., tomato cotyledons) tended to be over cut, the “height” 

used to define the local minima before opening was determined based on the length of the 

major axis (MJX) of the object with the following criteria, which was determined by trial 

and error from sample images.  If the MJX of an object was less than 20 pixels, no 

opening was conducted.  If MJX was between 20 and 35, a new object was made using 

pixels with values less than or equal to the local minimum (hmin) plus 1 and opening was 

applied to the new object.  The result of opening this new object was used as a new local 

minima.   

Condition Operation
0 < MJX ≤ 20 : no opening 

20 < MJX ≤ 35 : opening using hmin + 1 
35 < MJX ≤ 80 : opening using hmin + 2 

80 < MJX : opening using hmin + 3 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 75

 
 
 
 
 
 
 
 
 
 
 
 
 
 

                 

                    5555                   
                   54445             
                   543445             
                  5443445             
          55555555443445                
          5444444443345                   
          5433333333345                   
         54432222222345                   
         54333333322345                   
         54444444332345                   
         55555554432345                   
                54323445                
                54323345                
                54322345                
                543223445             
                543223345             
                543212345             
                5433223445          
                5443223345          
                 543212345          
                 543212345          
                 5432123445       
                 5432123345       
                 54332123445    
                 54432123345    
                  5432112345    
                  5432112345    
                  5433212345    
                  5443212345    
                   543322345    
                   544322345    
                    54333345    
                    54433445    
                     543345       
                     544345       
                      54345       
                      54345       
                      54345       
                      54345       
                      54345       
                      54445       
                       5445       
 
  
                      5445        
                      5555 

                 (a) Original object to be opened.     (b) Distance image of binary object. 
 (where 1 = 251, 2 = 252, 3 = 253, 4 

= 254, and 5 = 255) 
 

                                    
 

(c)  Before opening: h = 251. (d)  After opening: h = 251. 
 

                                    
 

(e)  Before opening: h ≤ 252. (f)  After opening: h ≤ 252. 
 

                                    
 

(g)  Before opening: h ≤ 253. (h)  After opening: h ≤ 253. 
 

Figure 3.27  Example of obtaining connected local minima by opening. 

 



 76

The second modified algorithm was to use pre-flooding, which combined the 

local minima of an object before the watershed method was applied.  Pre-flooding is 

defined as  raising the local minima pixel values in an object to a pre-determined height 

(pixel value), if the pixel values were less than the pre-determined height.  If an object 

had pixels with values less than the pre-determined height, the objects were pre-flooded, 

then the watershed algorithm was applied.   

Since the appropriate level of pre-flooding varied with object shape and the shape 

varied a lot, it would be difficult to come up with some general technique to obtain 

pre-flooding level for each object without extensive study.  Thus, instead of determining 

the pre-flooding level for each object, it would be more useful to determine when the 

watershed algorithm needs to be applied.  Thus, the features of AREA, ELG and CMP 

were used to explore the feasibility of determining when the watershed algorithm needed 

to be applied.  The AREA could be used to determine whether the watershed algorithm 

should be applied to an object, since objects with a small area should indicate that they 

were a single object and probably not occluded.  ELG could be used to identify long and 

thin objects which  tended to be over cut and CMP could also be used to distinguish 

compact objects which  had a tendency of not being separated properly due to their lower 

local minima.  Hence, in order to determine the proper range of feature values for 

occluded and non-occluded leaves, training images were chosen randomly from the set of 

field images and plant leaves in the training images were divided into two groups: 

non-occluded and occluded.  Table 3.4 shows the mean  and standard deviation values for 

AREA, ELG and CMP of these two groups in 36 sample images. 

 



 77

Table 3.4  Mean and standard deviation of AREA, ELG & CMP for occluded  
and non-occluded plant objects. 
 

 Non-occluded group Occluded group 
 AREA ELG CMP AREA ELG CMP 

No. of objects 192 192 192 55 55 55 
Mean 181.1 0.273 1.038 945.1 0.246 0.408 

Std. Dev. 192.1 0.156 0.374 512.6 0.150 0.122 
Mean ± 1 Std. Dev. 0 ∼ 373.2 0.117 

∼ 
0.429 

0.664 ∼ 
1.413 

432.6 ∼ 
1457.7 

0.095 ∼ 
0.396 

0.286 ∼ 
0.530 

Mean ± 2 Std. Dev. 0 ∼ 565.2 0 ∼ 
0.586 

0.290 ∼ 
1.787 

0 ∼ 
1970.3 

0 ∼ 
0.546 

0.164 ∼ 
0.652 

 

In order to explore the feasibility of using the feature characteristics to determine 

when the watershed algorithm should be applied, thresholds were calculated with AREA 

and CMP between non-occluded and occluded groups using Bayes’ rule.  Suppose TAREA 

is a threshold of AREA between non-occluded group and occluded group.  Then, a 

threshold TAREA would be solved from  

T T
TAREA AREA

AREA

 -  181.1
192.1

 =  
945.1 -  

512.6
             =  389.4⇒  

A threshold for CMP, 0.563, was calculated as the same way.  ELG was not used since 

the ELG distributions of the two groups were greatly overlapped. Therefore, the 

following criteria was used to determine when the watershed algorithm should be 

applied. 

If AREA ≥ 389.4 and CMP ≤ 0.563, apply watershed algorithm. 

Otherwise, do not apply watershed algorithm. 

 

The last modification of the watershed algorithm was to use the number of 

concave regions since there were certain number of concave regions of a certain size if 

 



 78

the objects were partially occluded. The curvature of each object was calculated first and 

the number of concave regions was obtained so that the watershed algorithm was applied 

based on the concavity of an object.  If objects were partially occluded, then there were 

concavities of a certain size and the watershed algorithm would be applied in this stage.  

However, a non-overlapping single object could have concave regions on its boundary. 

Thus, a threshold value for the number of concave region was used. 

Table 3.5 shows the mean and standard deviation of the number of concave 

regions as defined by gap size of 5 pixels and offset of 5 pixels of non-occluded and 

occluded groups from the same 36 sample images previously used in the feature criteria. 

 

Table 3.5 Mean and standard deviation of concave regions for two groups. 

  Non-occluded group Occluded group 
No. of object 192 55 
Mean no. of 
concavities 

1.20 9.84 

Std. Dev. 1.52 3.86 
Mean ± 1 Std. Dev. 0 - 2.71 5.97 - 13.70 
Mean ± 2 Std. Dev. 0 - 4.23 2.11 - 17.56 

Min 0 3 
Max 7 18 

Median 1 9 
 

Based on the curvature distributions of the two groups, a threshold of 4 would be an 

appropriate cutoff to determine if the watershed algorithm should be applied.  The 

threshold of 4 was obtained similarly using Bayes’ rule. 

T T
TCCAVE CCAVE

CCAVE

 -  1.20
1.52

 =  
9.84 -  

3.86
             =  3.64⇒  

Therefore, the rule becomes 

 



 79

 If the number of concavities is greater than or equal to 4, then apply the watershed 

algorithm. 

Otherwise, do not apply the watershed algorithm. 

 

Finally, the modification with opening and the feature criteria were applied 

together to optimize cutting. For simplification, the following names (W0 - W5) were 

used to describe the original and each of 5 different modifications to the watershed 

algorithm. 

 

Table 3.6  Names of the watershed modifications and their description.  

Name Modification description 
W0 Original algorithm 
W1 Modification with opening operation 

W2-251 Modification with pre-flooding up to 251 
W2-252 Modification with pre-flooding up to 252 
W2-253 Modification with pre-flooding up to 253 

W3 Modification with feature criteria 
W4 Modification with the number of concavities 
W5 Modification with opening operation and feature 

criteria combined 
 

  
 

 



 80

3.4 Bayesian classifier with features 

This section describes the feature selection procedure for identifying tomato 

plants and weeds.  The following features were also used to identify plant leaves in 

addition to the features in Eq. (2.1) - (2.10) and Eq. (3.26) - (3.31). 

ATP = 
AREA

HET x WID
 

(3.32)

MTM = 
MJX
MNX

 
(3.33)

OCCR = 
AREA

MJX x MNX
  

(3.34)

PTP = 
WID  HET

PERIM

2 2+
 

(3.35)

M20 = ( )j -  i,  j) 
ji

x f
2

(∑∑  (3.36)

M02 = ( )i -  (i,  j)
ji

y f
2∑∑  (3.37)

M11 = (i -  )(j -  ) (i, j)
ji

y x f∑∑  (3.38)

PRINAXIS = 
1
2

1tan− ⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

2M
M  -  M

 x 
18011

20 02 π
  

(3.39)

ECCN = 
( )M  -  M  +  4M

AREA
20 02 11

2

 
(3.40)

 

 

 



 81

ATP is defined as the ratio of area to projected area (width x height).  MTM is the 

ratio of major axis to minor axis.  OCCR is the occupation ratio of an object with respect 

to the major diameter (MJX) and the minor diameter (MNX).  PTP is the ratio of 

pythagorean maximal length to the perimeter.  M20 is the second moment of an object 

along the x-axis and M02 is the second moment along the y-axis, where f(i, j) is the binary 

intensity level of a pixel at the (i, j) location. M11 is the multiplied moment of inertia of 

an object around the centroid. PRINAXIS is the orientation of the principal axes of 

inertia of an object measured counterclockwise from the horizontal line. The units of 

PRINAXIS are in degrees.  ECCN is a measure of eccentricity calculated from the 

second moments and the multiplied moment of inertia of an object.   

 
Table 3.7  Performance of the prototype machine vision system using validation data 

sets with ELG and CMP. 
 

Group Good Bad Total 
No. of images in training set 10 16 26
No. of images in validation set 41 46 87
Total no. of tomato leaves 192 128 320
Total no. of weed leaves 26 102 128
Avg. no. of tomato leaves per image 4.7 2.8 3.7
Avg. no. of weeds per image 0.6 2.2 1.5
Cotyledons found 80.0 % 62.5 % 75.0 %
Trueleaves found  38.0 % 14.7 % 30.5 %
Third group objects found 52.5 % 32.9 % 42.0 %
Weeds found 53.9 % 72.6 % 68.8 %
Avg. tomato leaves found  per image 85.1 % 53.6 % 73.1 %
Avg. no. of weeds found per image 53.9 % 72.6 % 68.8 %

 

For the first preliminary classifier, two features (ELG and CMP) were selected 

based on their performance (Lee et al., 1997).  In this test, a Bayesian classifier was 

created with 10 and 16 training images from the good and bad quality groups 



 82

respectively.  The performance of the prototype system was tested using 41 and 46  

validation data images from the good and bad quality groups respectively. 

Table 3.7 shows the results of the preliminary classifier.  With this classifier, 

73.1% of tomatoes and 68.8% of weeds were correctly identified from 87 validation 

images acquired from the commercial processing tomato fields in northern California. 

 

Feature subset selection procedure

For real-time identification of tomato plants and weeds, a minimum number of 

features needs to be selected among the features described in the previous chapters.  In 

order to select the best feature subset, field images were used which were taken from 13 

commercial processing tomato fields in Northern California starting in late May - late 

June 1996 and late March until mid-May 1997.  The tomato plants were in various stages 

of maturity from just emerging to the second true leaf stage.   

All images were divided into two groups of good and bad image quality based on 

the focus, camera aperture, wind, cotyledon opening, state of maturity, and occlusion.  It 

was an especially windy spring in Northern California in 1997 and most of the tomato 

plants in the commercial fields were lying down along the direction of wind travel.  

Tomato plants in the good image quality group were easier to recognize with an  

image processing algorithm since they retained their original shape. Tomato plants in bad 

images were harder to recognize since many of them lost their original shape due to 

occlusion and from being blown down by wind.  From each group, a training set and a 

validation set were created in order to estimate the plant recognition performance by the 

image processing algorithm. For the good image group, a total of 117 images were used 



 83

in  the training set and 157 images were used in the validation set.  For the bad group, a 

total of 129 images and 133 images were used respectively (Table 3.8).  The images in 

the training sets were selected carefully to represent the entire group while those in the 

validation sets were selected randomly from each group.  There was no overlap between 

training and validation sets.   

 
Table 3.8  Number of images used for feature selection in each group. 

 
 Good group Bad group Total 

Training set 117 129 242 
Validation set 157 133 290 

Total 274 262 536 
 
 

Objects were divided into 4 classes; tomato cotyledon, tomato true leaf, third 

group, and weed classes (Table 3.9). The objects in the third group consisted of 

cotyledons and tomato true leaves which were curled, occluded, eaten by bugs, and 

partially hidden by the edge of the image.  For this chapter, the class numbers (1, 2, 3, 

and 4) will be used instead of class description (tomato cotyledon, tomato true leaf, third 

group, and weed). 

Table 3.9 Class assignment for plant leaves in an image. 

Class Description 
1 Tomato cotyledon 
2 Tomato true leaf 
3 Tomato Third group 
4 Weed 

  

In order to find out whether objects from the third group could be separated from 

the weed class,  both training and validation sets in the good group (Table 3.10) were 

used together to test the feasibility of separating the third group objects from the weed 



 84

class using canonical discriminant analysis.  This test would indicate which classes could 

be separated.  In this test, all of the following 35 features were used.  YCNTRD is the 

y-coordinate of a leaf centroid.   

  

AREA, YCNTRD, PERIM, MJX, MNX, ELG, CMP, MAXC, MINC, AVGC, 

AVGABSC, STDEVC, NEG, ATL, PTB, LHW, LTP, SUMINV, ABSUMINV, WID, 

HET, M20, M02, M11, PRINAXIS, ATP, MTM, OCCR, PTP, MTMC, 

ATC, PTC, ETC, CTC, ECCN  

 
Table 3.10  Number of plant leaves in good training and validation sets together 

used for exploring separation feasibility of third group by canonical 
discriminant analysis. 

 
Class No. of objects Proportion (%) 

1  228 0.141 
2  306 0.189 
3 687 0.424 
4  400 0.247 

 

Table 3.11 and Figure 3.28 show the result of canonical discriminant analysis 

with good training and validation sets together.  Canonical discriminant analysis is a 

dimension-reduction technique related to principal component analysis and canonical 

correlation.  Given a classification variable and several quantitative variables, this 

analysis derives canonical variables (linear combinations of the quantitative variables) 

that summarize between-class variation in much the same way that principal components 

summarize total variation.  For canonical analysis, the SAS procedure CANDISC was 

used. 



 85

Table 3.11  Result of canonical discriminant analysis with good training and  

validation sets together. 

Canonical Discriminant Analysis     Pairwise Squared Distances Between Groups 

                        2         _   _       -1  _   _   
                       D (i|j) = (X - X )' COV   (X - X ) 
                                   i   j           i   j  
 
                 Squared Distance to CLASS 
  
 From CLASS                 1                2                3                4 
 
           1                0          6.31045          6.19911          6.57798 
           2          6.31045                0          3.41924          2.30020 
           3          6.19911          3.41924                0          1.18015 
           4          6.57798          2.30020          1.18015                0 
 
                 F Statistics, NDF=35, DDF=1583 for 
                 Squared Distance to CLASS 
  
  From CLASS                1                2                3                4 
 
           1                0         23.06099         29.68265         26.71963 
           2         23.06099                0         20.24701         11.15438 
           3         29.68265         20.24701                0          8.34502 
           4         26.71963         11.15438          8.34502                0 
 
                 Prob > Mahalanobis Distance for 
                 Squared Distance to CLASS 
  
  From CLASS                1                2                3                4 
 
           1           1.0000           0.0001           0.0001           0.0001 
           2           0.0001           1.0000           0.0001           0.0001 
           3           0.0001           0.0001           1.0000           0.0001 
           4           0.0001           0.0001           0.0001           1.0000 
 

Canonical Discriminant Analysis 
 
                                 Adjusted       Approx       Squared   
                  Canonical      Canonical     Standard     Canonical  
                 Correlation    Correlation     Error      Correlation 
 
            1      0.644056       0.633081     0.014539      0.414808  
            2      0.548430       0.536029     0.017372      0.300775  
            3      0.343368       0.319173     0.021916      0.117902  
 
                                 Eigenvalues of INV(E)*H 
                                   = CanRsq/(1-CanRsq)   
  
                  Eigenvalue    Difference    Proportion    Cumulative 
 
             1       0.7088        0.2787       0.5570        0.5570   
             2       0.4302        0.2965       0.3380        0.8950   
             3       0.1337         .           0.1050        1.0000   
 
                      Test of H0: The canonical correlations in the 
                        current row and all that follow are zero 
  
                Likelihood 
                   Ratio      Approx F      Num DF      Den DF    Pr > F 
 
           1    0.36093778     18.3045         105     4741.31    0.0001 
           2    0.61678518     12.7329          68        3168    0.0001 
           3    0.88209827      6.4198          33        1585    0.0001 



 86

 
Plot of CAN2*CAN1.  Symbol is value of CLASS. 

 
CAN2 | 
     | 
   6 + 
     | 
     | 
     | 
     | 
     | 
     |                                 2 
   4 +            3             2 
     |                      2        2 
     |                 2     4   42   2 
     |               44    4 44 
     |               2   4 2  42 2  222 22   2 
     |                 4  4 424422 22 2 2 2 2   2    2 
     |           4   44  4 23222 2422222 22 2 22 
   2 +                4    2434222222222422222      2   1 
     |                 3   22422222232232 223 22  2 2 
     |                   2342222122222 24222  2  2           1 
     |                 2  42224222222 224 22    2 12 
     |                   434422322223224  21 2  12 1  1      1       1 
     |                   2323332132223124231143   11 11 1  111   1 
     |             3 3 333 32324213232232121121 1131111 111111 
   0 +                33 23223233232213321121 11411211111 21 
     |            33  3433 23332332411121111141111111 111  1      1 1 
     |               33 2333233232131113111111 11  111 111 1 11 111 3 
     |          3 3  3433324333443331142311111111313111 31 1       1  1 
     |            3 433333333344333313133111 111   1   1 21  11 
     |            3343 3333 4333 4341 331131313 14  11  3     1         1 
     |              33 33     3   333333 3  33  1         1      1 
  -2 +      3  3    3        3      33342 4   11 3431                 1     1 
     |     3     3    3    3      3  3  3  1   3                 1 
     |                                              3          1 
     |                                               3 
     |                     3                      3 
     | 
     | 
  -4 + 
     | 
     | 
     |                          3 
     |                                                                    3 
     | 
     | 
  -6 + 
     | 
     --+-------------+-------------+-------------+-------------+-------------+-
- 
      -4            -2             0             2             4             6 
 
                                         CAN1 
 
NOTE: 1108 obs hidden. 
 
 
 

Figure 3.28  Plot of canonical variable 1 and variable 2 with good training and  
validation sets. 

 
 

 



 87

From Table 3.11, the squared distance from class 1 to classes 2, 3, and 4 is over 6 

whereas the distance from class 3 to class 4 is 1.18, indicating that the classes 3 and 4 

could not be easily separated.  The plot of canonical variable 1 and variable 2 (Figure 

3.28) also confirmed the same result.  These results indicate that the third group could not 

be separated from weed class using only a single 2-D top view even though only the good 

image group was used.  In addition, if the third group could not be separated from the 

weed class with good group altogether, the third group would not be separated for a 

smaller set from the good group or the bad group.  Therefore, the objects in class 3 were 

temporarily set aside during the feature selection process and only the classes 1, 2, and 4 

were used for the feature selection process. 

Next, the a priori probability for each class needs to be determined for 

discriminant analysis. In theory, the a priori probability should be set to the proportion 

that, if a plant leaf were chosen, a decision should be made as to what class that leaf 

would fall in without being observed.  However, changing the a priori probability is a 

very useful way to adjust the decision process and should be used.  It is very useful to try 

and weight one class more heavily than another.  The training and validation sets used in 

this chapter came from different fields at different stages of development and the a priori 

probability of the different classes changed from field to field.  Often the images were 

collected disproportionately to the actual occurrence in the field since some unusual 

appearances needed to be included in the training set.  In addition, the classifier needed to 

work correctly on ideal images too. 

In this research there is more emphasis on recognizing weeds than recognizing 

tomato plants since if the weed recognition rate is low, more work still needs to be done 



 88

after the robotic weed control system eliminates weeds.  Usually tomatoes are over 

planted since their germination rate is variable and often tomato growers perform a 

thinning operation to maintain their desired stand. 

In order to determine the proper level of the a priori probabilities for the three 

classes, the good training and validation sets together were used as sample data set and 

discriminant analyses were conducted with different a priori probabilities with all of the 

35 features. Table 3.12 shows the result of discriminant analysis with different a priori 

probabilities for good training set using all of the 35 features. Table 3.13 shows the 

discriminant analysis result with proportional a priori probability and a priori 

probabilities of 0.1, 0.1 and 0.8 for classes 1, 2, and 4 respectively. 

 

Table 3.12 Discriminant results with different a priori probabilities with good 
training and validation sets using all 35 features. 

 
A priori probability Recognition rate 

class 1 class 2 class 4 class1 class2 class4 
0.0395 0.3276 0.4283 96.1 61.4 65.8 

0.1 0.1 0.8 95.6 59.5 68.8 
0.1 0.2 0.7 95.6 59.8 67.3 
0.1 0.3 0.6 95.2 60.8 66.5 
0.1 0.4 0.5 95.6 61.4 66.3 
0.1 0.5 0.4 95.6 62.4 65.8 
0.1 0.6 0.3 95.2 63.1 65.3 
0.1 0.7 0.2 95.2 65.0 64.0 
0.1 0.8 0.1 95.2 68.0 62.3 

 

In this test, the a priori probability for the class 1 was fixed to 0.1 and the a priori 

probabilities for classes 2 and 4 were changed with 0.1 increment for the class 2 and 0.1 

decrement for the class 4.  For the class 4, the recognition rates decreased as the a priori 

probability decreased.  On the other hand, the classification rates for the class 2 increased 



 89

as the a priori probability increased.  Thus, since the emphasis was on recognizing more 

weeds than more tomato plants, the a priori probabilities of 0.1, 0.1, and 0.8 were used 

for classes 1, 2, and 4 respectively for further discriminant analysis throughout the 

feature selection procedures.  

 

Table 3.13 Discriminant analysis results with different a priori probabilities  
for good training and validation data set with all of the 35 features. 

 
A priori probability: proportional 
 
        From CLASS              1              2              4          Total 
 
                 1            219              3              6            228 
                            96.05           1.32           2.63         100.00 
 
                 2             50            188             68            306 
                            16.34          61.44          22.22         100.00 
 
                 4             76             61            263            400 
                            19.00          15.25          65.75         100.00 
 
             Total            345            252            337            934 
           Percent          36.94          26.98          36.08         100.00 
 
            Priors         0.2441         0.3276         0.4283 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.0395           0.3856           0.3425       0.2259 
 
 
A priori probability: class 1 = 0.1, class 2 = 0.1, class 4 = 0.8 
 
        From CLASS              1              2              4          Total 
 
                 1            218              2              8            228 
                            95.61           0.88           3.51         100.00 
 
                 2             48            182             76            306 
                            15.69          59.48          24.84         100.00 
 
                 4             73             52            275            400 
                            18.25          13.00          68.75         100.00 
 
             Total            339            236            359            934 
           Percent          36.30          25.27          38.44         100.00 
 
            Priors         0.1000         0.1000         0.8000 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.0439           0.4052           0.3125       0.2238 



 90

This choice of the a priori probability (tomato plants = 0.2 and weeds = 0.8) was 

probably acceptable since the a priori probabilities were used here as a tool to recognize 

more weeds than to recognize more tomato plants.   

 

Table 3.14 A priori probability assignment for discriminant analysis. 

Class A priori probability 
1 0.1 
2 0.1 
4 0.8 

 

The first step in plant recognition was to select features which could discriminate 

plant leaves into their original classes.  To find the best subset of features, training sets in 

both good and bad groups were used with all 35 input variables unless stated otherwise. 

Table 3.15 shows the number of plant leaves used for the feature selection procedure in 

each class in each group.     

 

Table 3.15 Number of plant leaves used for feature selection for each class in each group. 
(where, 1 = Tomato cotyledon, 2 = Tomato true leaf, and 4 = Weed) 

 
Good group Bad group 

Class Training Validation Class Training Validation
1 78 150 1 90 123 
2  127 179 2 114 111 
4  198 202 4 138 157 

Total 403 531 Total 342 391 
 

 

The following three procedures were used to find the best features to identify tomato 

plants and weeds. 



 91

Method I

 The first method was to use canonical discriminant analysis and principal 

component analysis to choose the best features by removing any useless features and to 

take advantage of the large feature set but to eliminate the problems with 

multi-colinearity. Features extracted from the same object tend to be correlated or have 

multi-colinearity by nature.  If there exists multi-colinearity among features, 

classification with those highly correlated features does not reflect any inherent effect of 

the particular feature on the classification result but only a marginal or partial effect.  

Thus, a multi-colinearity problem should be solved.  

This method produced the best solution regardless of cost.  Principal component 

analysis is generally used to maximize the variance of a linear combination of the 

variables and is used when highly correlated independent variables may produce unstable 

estimates.  In these two tests (canonical discriminant analysis and principal component 

analysis), the following 35 features were used as input features.   

AREA, YCNTRD, PERIM, MJX, MNX, ELG, CMP, MAXC, MINC, AVGC, 

AVGABSC, STDEVC, NEG, ATL, PTB, LHW, LTP, SUMINV, ABSUMINV, WID, 

HET, M20, M02, M11, PRINAXIS, ATP, MTM, OCCR, PTP, MTMC, 

ATC, PTC, ETC, CTC, ECCN  

 

In this method, the multivariate test for differences between the classes was 

conducted at the 0.0001 level using Wilk’s Λ test and other tests.  Wilk’s Λ test is a 

likelihood ratio test for population mean difference (Ho: µ1 = µ2  = … = µk) and is given 

by 



 92

Λ = 
E

E +  H
 

(3.41)

 

where, H = n ( )( ). .. . ..y y y yi i
i

k

 -   -  
=
∑

1
'  (between sample sums of squares) and 

E = ( )(.y y y yij i
j

n

i

k

ij i -   -  
==

∑∑
11

)'.  (within sample sums of squares). 

The null hypothesis, Ho, is rejected if Λ is smaller than or equal to the table value. 

 

Method II 

The second method was to try to find a feature subset for real-time field use.  

Since the goal of this research was to build a real-time robotic weed control system, 

features to be used for recognition of tomato plants and weeds should not take too much 

time to be calculated while providing enough discriminatory power to identify tomato 

plants and weeds. In this method, the number of features were limited to 4 for real-time 

implementation.  In addition, multi-colinearity among features should also be solved 

since highly correlated independent variables (features) provide only marginal or partial 

effect to the dependent variable (resulting class for an object).   

This method (II) was to try to reduce the number of features to the most important 

subset by correlation analysis and to find a good combination of features using the linear 

regression model selection procedure based on the R2 criteria.  With correlation analysis, 

if two or more features were highly correlated, only one feature could be chosen from the 

set and other features were removed.   



 93

Then, the linear regression model selection procedure by R2 criteria was used with 

the 35 features as independent variables and class number as a dependent variable.  This 

method was the only method that could try all of the possible combinations of the 

maximum number of features in a reasonable amount of time.  This process produced 

linear regression models and associated R2 values for all of the possible combinations of 

input features.  Feature combinations with higher R2 values were important feature 

subsets.   

For correlation analysis, the SAS procedure CORR was used and the procedure 

REG was used for linear regression model selection with the R2 criteria.  From 

correlation analysis, the following subsets in square bracket had correlations of over 0.9 

with the feature on the left in Table 3.16. 

Table 3.16 Highly correlated feature subsets in both good and bad training sets. 

Good training set Bad training set 
AREA ∝ [PERIM, MJX, MNX, ATL, ATC, PTC] AREA ∝ [PERIM, ATC] 
PERIM ∝ [AREA, MJX, NEG, PTC] PERIM ∝ [AREA, MJX, NEG] 
MJX ∝ [AREA, PERIM, PTC] MJX ∝ [PERIM, PTC] 
MNX ∝ [AREA, ATL] MNX ∝ [ATL] 
ELG ∝ [MTM] ELG ∝ [MTM] 
PTB ∝ [PTP] PTB ∝ [PTP] 
ATC ∝ [AREA, PTC] ATC ∝ [AREA, PTC] 
 

Therefore, from the result of correlation analysis, the following 6 features were removed 

to reduce multi-colinearity since they were common in both groups:  

ATC, ATL, MJX, MTM, PERIM, and PTP.     

The basic idea here was first to find minimum good feature subsets that gives 

good classification of tomato cotyledons vs. weeds, then to find good features for tomato 

true leaves vs. weeds so that the overall classification rate could be improved.  Feature 



 94

models could not be developed using this technique for all three classes simultaneously, 

but were restricted to two class models due to difficulties in assigning appropriate class 

values for the dependent variable when more than two classes are present in the analysis.  

For example, if the values of tomato cotyledon = 1, tomato true leaf = 2, and weed = 4 

were assigned to the dependent variable and the regression analysis was conducted, then 

the regression analysis considered that the true leaf had twice as much value as tomato 

cotyledons and weeds had 4 times as much value as cotyledons and twice as much value 

as tomato true leaves which might not be appropriate.  Therefore, only two classes were 

used at one time for the R2 model selection procedure. 

Prior to finding the best features for real-time field use, execution time for each 

feature was measured using the computer clock. In this test, a 200 MHz Pentium 

processor was used to process the image.  The sample image (256 x 240 pixels) had 10 

tomato cotyledons with each cotyledon containing about 400 pixels.  Each execution time 

was for only one object and was the  average of 1000 iterations.     

 

Method III 

 This method was used to find the best feature subset for real-time use by trial and 

error method.  In this method the maximum number of features was limited to 4 for 

real-time field use.  

Prior to using this method, stepwise discriminant analysis was performed with 

good and bad training sets by backward elimination and stepwise selection options after 

removing 6 features by correlation analysis. The forward selection option was not used 

since this option did not remove any redundant features from the set.  Although stepwise 



 95

discriminant analysis does not select the best subset of features due to multi-colinearity 

among features, the result from this analysis would be used as supplementary 

information.  Table 3.17 shows the selected features from stepwise discriminant analysis 

listed by their partial R2 values.  For this process, the SAS STEPDISC procedure was 

used with both good and bad training sets.  

Thus, feature subsets for the Method III were selected based on the following three 

analysis: principal component analysis, canonical discriminant analysis, and stepwise 

discriminant analysis. 

 

Table 3.17  Selected features from stepwise discriminant analysis  
for good and bad training sets. 

 
Good training set Bad training set 

Backward 
elimination 

Stepwise 
selection 

Backward 
elimination 

Stepwise 
selection 

MNX ELG AREA MNX 
M02 PTC LTP LTP 
ETC OCCR OCCR OCCR 
PTC ETC PTB AVGABSC 
LTP AREA M20 PTB 
PTB M02   

AREA HET   
OCCR M20   
NEG MNX   
M20    
WID    

AVGABSC    
 
 



 96

3.5 Displacement sensing and calibration of encoder 

Displacement sensing was very important in this research, since timing for image 

acquisition and valve control were based on the distance traveled.  In order to sense 

travel distance correctly, many devices were tried.  First, two radar sensor units (John 

Deere and Raven-Model No. 063-0159-835, Raven Industries, Sioux Falls, SD), which 

are normally used in tractors were tested.  However, these radar units did not work at 

speeds less than 1.6 km/h.  Since the prototype robotic system had a maximum traveling 

speed of about 0.8 km/h, these units were not appropriate. 

A bicycle wheel with an encoder mounted on its axle was evaluated to sense 

travel distance.  However, the tire was narrow and light, and did not provide enough 

stability, frequently jumping around a lot when it was used in tomato fields where many 

dirt clods or bumps were present.  Hence, the bicycle wheel was not suitable for correct 

distance measurement. 

A cultivator gage wheel was finally used which was attached to the cultivator 

toolbar with an encoder (Model HR6251000000A, Danaher Controls) mounted on its 

axle.  The gage wheel provided enough stability and worked at a lower speed range (less 

than 1.6 km/h).  The encoder generated a pulse whenever the tractor moved 0.13 mm 

forward on the soil.  The encoder output was 1000 pulses/revolution and in order to 

obtain higher resolution from the encoder, an intermediate pulley was used between the 

encoder and the axle of the gage wheel. 

The encoder was calibrated each time prior to field tests of the robotic weed 

control system. The number of encoder pulses were counted after traveling a  

pre-determined distance.  The resolution of the encoder was then calculated by dividing  



 97

the traveled distance by the number of pulses.  The average resolution was 0.13 mm per 

pulse on soil and 0.14 mm per pulse on a smooth concrete floor.       



 98

3.6 Precision chemical application system 

 A precision chemical application system was used as the actuator of the robotic 

weed control system to kill weeds after weed locations were identified.  The system, 

Figure 3.29, consisted of a valve driver circuit, eight 12 Vdc solenoid valves (Capstan Ag 

Systems, Inc., Topeka, Kansas), a metal valve alignment plate (13.97 cm x 6.35 cm x 

0.48 cm), a stainless steel manifold (3.18 cm x 3.18 cm x 13.97 cm), a specially designed 

accumulator, a CO2 tank, a pressure regulator, and a spray mix tank.  The robotic 

spraying system was mounted at the end of the tunnel about two image frames behind the 

camera.   

 

ACCUMUL ATO RPRESSUR E
GAGE

SPRAY MIX
TANK

CO2

TANK

PRESSUR E
REGULATOR VALVE / NOZZLE

ARRAY

ON / OFF
VAL VE

PRESSUR E
GAGE

MANIFO LD

 

 

Figure 3.29  Spray mix supply system 

 



 99

3.6.1 Nozzle design 

The precision spray nozzles were designed to spray a 0.64 cm x 1.27 cm region 

on the soil and to keep the flow rate as low as possible.  Several nozzle prototypes were 

built and tested to determine which could deposit an appropriate amount of spray on a 

spray region.  For example, commercially available nozzles (TP1501, TP1509, TP2508, 

TP4001E, TP150033, TP400067, and TP400067E, Spraying Systems Inc., Wheaton, 

Illinois), a nylon unslotted hex head screw (size 8-32, 1.27 cm long) with a variety of 

center holes (diameter = 0.34 mm - 0.71 mm), and a plexiglass orifice plate (5 holes on a 

center line, each with a diameter = 0.25 mm, 2.54 mm apart from each other) were 

evaluated.  However, none of these were acceptable.  The commercially available 

nozzles provided much larger spray drops than desired.  The spray drop from the nylon 

hex head screw was a single solid stream and it did not disperse and did not provide 

enough spray coverage.  The plexiglass orifice could not be used since the spray droplets 

were not aligned at the center and they landed in a random pattern on the ground, since 

the holes in the plate were very small (diameter = 0.25 mm) and it was very difficult to 

drill the holes  straight.   

 After all these trials, hypodermic tubes of very small diameter were found to be 

plausible as spray nozzles.  The hypodermic tube nozzles provided straight spray streams 

and a properly sized elliptical deposit on the ground. 

 As shown in Figure 3.30, five hypodermic tubes (Heavy Wall Stainless Steel 

Type 304-W, Part no. E-HTX-22HW, 22 gauge, O.D. = 0.71 mm, I.D. = 0.28 mm, 12.7 

mm long, Small Parts, Inc., Miami Lakes, Florida) were attached in a line along the 

center of a stainless steel plate (2.54 cm x 2.54 cm, 0.48 cm thick) using Epoxy glue 



 100

(Cole Parmer Instrument Co., Chicago, IL60648).  The tubes were 2.54 mm apart from 

each other.  This “micro-spray” nozzle was attached to the solenoid valve using four 

bolts screwed into the valve body and a thin round rubber sheet (2.54 cm diameter, 0.41 

mm thick) was used as a gasket. 

 

  

2.54 mm
2.54 mm

2.54 mm
2.54 mm

10.16 mm
Dia. = 25.4 mm    

SOL ENO ID
VAL VE

RUBBER
GASKET

METAL
PLATE
HYPOD ERMIC
TUBE

SCR EW

0.48 cm

1.27 cm

 

       (a) Bottom view.          (b) Side view. 
 

Figure 3.30  Valve / nozzle assembly structure. 

 

When moving at 1.20 km/h, each micro-spray nozzle provided an elliptical deposit, 0.90 

cm along the axis of travel and 1.27 cm normal to axis of travel, using a 10 ms valve 

opening time at 103 kPa and a nozzle height of 10.16 cm above the ground.  A spraying 

time of 10 ms gave a flow rate of 0.098 L/min for each valve and an exit velocity from 

the nozzle of 6.4 m/s.  A CO  tank was used to pressurize the spray system.  The eight 

solenoid valves (2.54 cm diameter) were aligned in two rows (four valves in each row, 

2



 101

Figure 3.5) in order to allow the entire 10.16 cm wide seedline to be sprayed when they 

were all opened simultaneously.  An accumulator was attached to the manifold in order to 

maintain a constant flow rate independent of the number of valves opened 

simultaneously. 

 

3.6.2 Valve / nozzle design 

 The optimal valve operating conditions such as nozzle height, valve opening 

time, flow rate, exit velocity, manifold pressure, and accumulator design, were 

determined by trial and error.  If a nozzle was too far away or too close to the ground, or 

pressure inside the manifold was too high or too low, the spray pattern size was different 

than desired.  There was  also a significant pressure drop inside the manifold when all 8 

valves were opened simultaneously.  An accumulator was used to stabilize the pressure 

drop inside the manifold, regardless of the number of valves opened at the same time. 

The flow rate of a valve was measured with one valve chosen randomly out of 8 

valves.  The valve was opened for pre-determined time (Table 3.18) and the mass of 

distilled water was measured for each trial.  The flow durations were 5, 10, 15, 20, 25, 

and 30 seconds and three repetitions were performed for each opening duration.  From 

the results of Table 3.18, an average flow rate, , was 1.632 ml/sec. Q
•

 

Q
•

 = 513.99 g / 315 s = 1.632 ml / sec (3.42)

 



 102

Table 3.18 Valve flow for different periods of operation. 

Flow duration (sec) Mass of water flowing through valve (g) 
5 8.41 
5 8.28 
5 8.23 
10 16.69 
10 16.45 
10 16.48 
15 24.69 
15 24.41 
15 24.58 
20 32.52 
20 32.64 
20 32.58 
25 40.81 
25 40.64 
25 40.62 
30 48.62 
30 48.72 
30 48.62 

Total: 315 Total: 513.99 
 

Two methods were used to measure the exit velocity of the spray drops.  One was 

to calculate the velocity using flow rate and the area of flow.  A hex head screw was used 

as a nozzle with a hole (dia. = 0.05715 cm) at the center for calculating the exit velocity 

of spray droplets from the nozzle.  The area of a  nozzle, A was 0.00256 cm  (= π / 4 x 

(0.05175 cm) ).  Thus, the exit velocity, V was calculated as follows. 

2

2

V = 
Q
A

•

 = 
1632
0 00256
.
.

 ml / sec
cm2  = 6.361 m/sec (3.43)

 

The other method to calculate the exit velocity used a pressure transducer and an 

accelerometer to get  the flight time of a spray droplet for a pre-measured distance, 

Figure 3.31. 



 103

 

VAL VE

PRESSUR E
TRANSD UCER

AMPLIF IER

ACCELEROMET ER

NOZZL E

PRESSUR IZED
WAT ER

CH. 1

CH.2

OSCILL OSCOPE

TIME

TIME

VOLTAGE

VOLTAGE

t
h

VAL VE
OPEN

DROPL ET HITS
ACCELEROMET ER

VAL VE
CLOSE

 

Figure 3.31  A schematic for measuring an exit velocity of spray droplet. 

 

A valve was positioned above an accelerometer (model ACH-01, Pennwalt Corp., Kynar 

Piezo Film Dept., Valley Forge, PA) at a height h.  When a spray droplet hit the 

accelerometer, the output signal was amplified (model IB-ACH01-01, Pennwalt Corp., 

Valley Forge, PA) and displayed on one channel of an oscilloscope (model TDS520, 

Tektronics Inc., Wilsonville, Oregon).  At the same time, the pressure change inside the 

valve was monitored via a pressure transducer (model PX176, OMEGA Engineering 

Inc., Stamford, CT).  Then, the flight time, t, from valve opening to the time the droplet 

hit the accelerometer  was read from the oscilloscope.  The flight time t and the height h 

are shown in Table 3.19. 



 104

Table 3.19 Nozzle height and flight time of spray droplet. 

Height (cm)  7.62  10.16 12.70 
Flight time (ms) 12.9  16.0 19.9 

 13.0 16.6 20.0 
 12.8 15.6 20.1 
 12.8 14.4 19.7 
 12.5 16.4 19.8 
 12.5 16.8 18.7 
 12.4 16.5 18.7 

Average (ms) 12.70 16.04 19.56 
 

Thus, when the valve was 10.16 cm high from the ground, the exit velocity was 

calculated (ignoring gravitational effects) as 6.35 m/s (= 10.16 cm / 16.04 ms).  This 

result matched the one from the previous method.   

 

3.6.3 Valve driver circuit 

 A microcontroller (SensorWatch , TERN Inc., Davis, CA) and a valve control 

circuit (Figure 3.32) were used to control the micro-spray valve array.  One of the tasks 

of the microcontroller was to control the precision valve system, i.e., to open the 

corresponding valve for 10 ms when the valve was directly above a weed location.   

TM

The microcontroller was programmed prior to use via an RS-232 serial link using 

the Borland C compiler.  The microcontroller had eight digital output ports, which were 

connected to the eight TTL inputs of the valve driver circuit.  The operation of these 

valves was manipulated by writing a 0 or 1 to the microcontroller digital output ports.   



 105

BAT-

BAT+

+ 12V
G ND

2

3
1

8

C4.7U 25TAN

C.10 U63M C10

C.10 U63M C10

CR1 N40 01

NC
VDD

VDD

7

6
4
5

G ND

G ND

MAX442 0CPA

Q 1PF240

RAYCH EM#R UE50 0

V C U R R E N T

G ND

R10.0K X

R200 KX

+

-
U2B

5

6
7

+ 12V

C10 U63 MC1 0

R3.3KQ

R1.00M X

TTL
INPUT

R.02D C0.5

DT28.2B.6

CO IL-

CO IL+

R1.00M X R1.00M X

R1.00M X

C.01 U63M C10

3

2

4

1
8

+

-
U2A

 

 

Figure 3.32  Spray valve driver circuit (Courtesy of Capstan Ag Systems, Topeka, KS). 

 

 

3.6.4 Valve and encoder software 

The objective of the valve software was to open and close spray valves when they 

were needed.  The valve software was composed of nine subroutines, which were main, 

ready, running, download, set_param, kb_scan, kb_decode, tb_isr and ct1_isr.  The flow 

charts of the functions main, running, tb_isr and ct1_isr are shown in Figures 3.33  - 

3.35. 

The function main (Figure 3.33) was used to initialize the microcontroller, liquid 

crystal display, time base interrupt, serial port, and counter interrupt and to execute the 

function ready.  The function ready was used to provide the current status of the 

microcontroller to the function main.   



 106

The function running (Figure 3.34) was used to actually control the opening of 

the valves with a time base interrupt service routine, tb_isr, and a counter interrupt 

service routine, ct1_isr (Figure 3.35). This function was used during the operation of the 

prototype weed control machine, reading encoder counts, sending them to the main 

computer, and controlling the valve operation. This function loaded an initial cpc (count 

per cell) count to the counter, prevented simultaneous serial communication between the 

image processing computer and the microcontroller, calculated valve byte, and sent a 

character ‘a’ to the image processing computer to acquire a new picture. The valve byte 

was one byte of information indicating which valves the microcontroller opened or 

closed while the valve array was traveling over the corresponding weed location in an 

image. 

The download function was executed when valve arrays were downloaded from 

the microcontroller via RS-232 serial communication in order to compare them with 

those sent from the image processing computer.  The set_param function was used to 

adjust three parameters for the operation of the valve opening in connection with encoder 

reading.  The first parameter, cpc, was the number of encoder pulses per spray column.  

The second, spray_delay, was the number of spray cells between the camera and the first 

line of valves, and was used to account for the delay associated with the offset between 

the camera and the first line of valves.  The last, noz_ofs, was the delay between the first 

and the second line of spray valves.  The typical value of these parameters were 49, 20, 

and 6  respectively for commercial field use.    

 The function, kb_scan, was used for scanning the keyboard of the microcontroller 

and returning the status of keyboard.  The function, kb_decode, was used to convert 



 107

keypad code into a more understandable pattern.  The function, tb_isr, was a time base 

interrupt service routine.  This function was executed every 1.024 ms when an interrupt 

was generated by a time base counter and turned off all eight valves after 10 ms spraying. 

The function, ct1_isr, was used to send valve bytes to the nozzles, to determine 

the travel distance, and to send a character ‘a’ to the image processing computer when 

the prototype system traveled the distance of an image size.  This function was executed 

whenever an interrupt was generated by a  µPD71504 counter/timer (NEC, Japan) for 

every cpc (counts per cell) encoder pulses.  A new cpc count was loaded in the counter at 

the beginning of the running function.  When the count down counter decremented from 

an initial count cpc and reached a count 1, an interrupt was generated and the counter 

interrupt service routine, ct1_isr, was executed.  Then, new cpc count was reloaded to the 

counter for the next interrupt in the running function. 

 

 

 

 

 

 



 108

 

 

 

Start

Set spray delay
spray_delay = 18

Set nozzle offset
noz_ofs = 6

Set counts per cell
cpc = 45

Set display timer
display_timer = 0

Initialize V-25 engine

Initialize LCD

Set interval = 1.024 ms
for time base interrupt

Initialize serial buffer

Initialize counter 1

Disable counter 1

Enable counter/timer 1

Get run_status

run_status = 1

run_status = 2

run_status = 3

Yes

No

Yes

No

Yes

No

Go to running( ) function

Go to set_param( ) function

Go to download( ) function

acount=kmax=ccount=0
count0=aflag=0

 

 

 

Figure 3.33  Flow chart of main( ) function. 

 

 



 109

Start

Set position counter
position_counter = 18

Set a variable
indicating IPC is ready

mycount = 1

Clear LCD line

Set a varaible for sync
between IPC & MIC

k0  = 0

Initialize arrays
spray_array[ ]  & stored[ ]

Set spray pointer
spray_ptr = 0

Set
store_ptr0 = spray_delay

Flush serial input buffer

Send first character 'a'

Increament acount by 1

Set initial counts per cell
to counter

Enable
counter/timer

Character exists
in serial buffer?

IPC finished
processing image?

No

display_time =1000 ms

Decrement mycount by 1

char0 = Read position_byte
from serial buffer

char1 = Get one character
from serial buffer

Increase number of
character read from serial

buffer

Increment store_ptr0 by 1

IPC & MIC are
in sync ?

No

Send a character 'z',
variables char0, char1,
mycount, store_ptr0, k

to IPC

Go to download( )
subroutine

Calculate spray_array[ ]

Calculate stored_array[ ]

IPC & MIC in sync
and IPC ready?

Yes

Send 'a' to
image processing computer

Set aflag to 1
Set count0 to ccount

Increment acount by 1

Get run_status

run_status = 1 ?

Wait until there are no
character in serial buffer for

at most 1 s
(display_timer > 0)

Yes

Restore mycount to 19

char0 = Read position_byte
from serial buffer

Increment ccount by 1

char1 = Get valve_byte
from serial buffer

Yes

Increment ccount by 1

No

IPC & MIC are
in sync ?

Calculate number of column
that store_ptr0 must

be advanced
(k = 18 - position_counter)

store_ptr0 =
(store_ptr0 + k + 18(k0 - 1))

& 0xff

store_ptr0 needs
to be advanced ?

Calculate number of column
that store_ptr0 must

be advanced
(k = 18 - position_counter)

Increment store_ptr0 by 1

Yes

Np

Restore  position_counter
to 18

Set k0 to 0
Set aflag to 0

Clear LCD line

No

Is there a
keyboard input?

run_status = 0

Yes

Disable counter/timer

End

Yes

Yes

Increase number of
character read from serial

buffer

Yes

IPC & MIC are
in sync ?

Wait until there are no
character in serial buffer for

at most 1 s
(display_timer > 0)

No

Yes

No

display_timer > 0 ?

Yes

No

No

Yes

Send a character 'z',
variables char0, char1,
mycount, store_ptr0, k

to IPC

Go to download( )
subroutine

No

display_timer > 0 ?

No

 

 

Figure 3.34  Flow chart of running( ) function. 

 



 110

Start

Has 10 ms past ?

Decrease spray_timer
by 1 ms

spray_timer = 0 ?

Turn off all 8 valves

display_timer = 0 ?

Decrease display_timer
by 1 ms

End

Finish interrupt
service routine

Yes

Yes

No

No

No

Yes

Send valve_array to valves

Set spray_timer to 10 ms

Clear spray_array after
spraying

Increase spray pointer by 1

Decrease position_counter
by 1

18 spray positions
encountered ?

IPC ready? and
IPC & MIC in sync?

and
'a' has not sent

to IPC ?

Send a character 'a'
to IPC

Set aflag to1
Set count0 to ccount

Increment acount by 1

Restore position_counter
to 18

End

Finish interrupt
service routine

Yes

Start

Increase k0 by 1

Find maximum k0 value and
keep it in kmax variable

Yes

No

No

 

 

(a) Time base interrupt service routine,      (b) Counter interrupt service routine, 
tb_isr( ) ct1_isr( ) 

 

Figure 3.35  Flow chart of interrupt service routines. 

 

The following is an example showing how valve bytes were calculated, encoded in the 

microcontroller and decoded after downloading them to the image processing computer.  

The input image used here is the same as Figure 3.38 (a), page 122.  Figure 3.36 (a) 

shows an input image, where T signifies tomato plants and W signifies weeds.    



 111

WWW

W

W WW

T T

T

T T T T

11
12

13
14

15
16

17
18

1
2

3
4

5
6

7
8

9
10

Column Number

V
al

ve
 N

um
be

r
1

2

3

4

5

6

7

8

T = Tomato plant, W = Weed   

0 1101

1

1 11

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2

2

2

0

0

0

0

0

2

3

2

0

0

0

0

0

2

3

2

0

0

0

0

2

2

2

2

0

0

0

0

2

3

3

2

0

0

0

0

2

2

3

2

0

0

0

0

0

2

3

2

0

0

0

2

3

2

0

0

0

2

2

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

11
12

13
14

15
16

17
18

1
2

3
4

5
6

7
8

9
10

Column Number

V
al

ve
 N

um
be

r

1

2

3

4

5

6

7

8

1 = Weed location, 2 = Buffer Zone, 3 = Tomato location

0  0   0   0  0   0  0  0  0   0  0  1 16 17 19 0   0  0valve byte:

 

(a) Input image (b) Valve array 
 

 

0 2 5 6 7 8 9 10 11 12 131 1716151443

0 2 5 6 7 8 9 10 11 12 131 43255254253252

36 38 41 42 43 44 45 46 47 48 4937 535251504039

... Loop back

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00

0 0

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00

18 20 23 24 25 26 27 28 29 30 3119 353433322221

0 0 0 8 0 4 12 00 0 0 38 7 0 0 0 011

spray_ptr

store_ptr0

54 56 59 60 61 62 63 64 65 66 6755 717069685857

0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00

0 0 19 17 16 10 0 0 0 0 0 0 0 00

Previous  image

Current input  image

 

 
(c)  Memory (spray_array[]) for valve byte in the microcontroller. 

Figure 3.36  Example of calculating and storing valve bytes. 



 112

Figure 3.36 (b) shows a preparation step for calculating valve bytes.  A number ‘1’ is 

assigned to the cells which contain weeds.  A number ‘3’ is assigned to the cells which 

contain tomato plants.  Here a number ‘2’ means protection zone, showing cells where 

tomato plants are protected from herbicide drift.   The valve byte for each column is 

calculated using Eq. (3.44). 

 

Valve byte = v1¦ (v2<<1) ¦ (v3<<2) ¦ (v4<<3) ¦ (v5<<4) ¦ (v6<<5) ¦ (v7<<6) ¦ (v8<<7) (3.44)

where v1 - v8 are values in each cell for eight valves (rows) in a column. 

 

The resulting valve bytes are as follows. 

Column 
no. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Valve 
byte 

0 0 0 0 0 0 0 0 0 0 0 1 16 17 19 0 0 0

  

After calculating valve bytes, position bytes (column number) and valve bytes are sent to 

the microcontroller.   

 Figure 3.36 (c) illustrates the relationship of valve bytes, spray_ptr, and 

store_ptr0 in the spray_array[] in the microcontroller memory.  The variable, 

spray_array[], is a circular buffer with 256 elements, and the pointers loop back when 

all elements are used.  Spray_ptr points to the column of the input image, which is to be 

sprayed by the precision valve/nozzle, and store_ptr0 points to the memory location for 

storing valve bytes in the spray_array[].   

In the microcontroller, valve bytes are re-arranged before being sent to the 

nozzles, since the valve order in the precision spraying system is valve1, valve 5, valve 2, 



 113

valve 6, valve 3, valve 7, valve 4, and valve 8 (see Figure 3.5) and valve numbers 1, 3, 5 

and 7 are in the same line, valves 2, 4, 6, and 8 are in the other line.  The valves in the 

second line are opened noz_ofs spray cells later than the ones in the first line of valves.  

The value of noz_ofs was 6 in this research.  The valve bytes are re-calculated and stored 

in spray_array[] as follows. 

spray_array[i] ¦ = valve byte & 0x0f (3.45)

spray_array[i + noz_ofs] ¦ = valve byte & 0xff (3.46)

 

The resulting spray_array[] is as follows. 

spray 
array 
index 

 
… 

 
10 

 
11 12 13 14 15 16 17 18 19

 
20 

 
21 

 
22 23 …

spray_ 
array 

… 0 0 1 0 1 3 0 0 0 16 16 16 0 0 …

 

The spray_array[] is sometimes downloaded from the microcontroller to the image 

processing computer and used to compare with the valve bytes sent from the image 

processing computer.  Suppose spray_array[] is downloaded and stored in the from_sw[] 

array, valve bytes are decoded from the from_sw[] array in the following manner. 

low4[i] = from_sw[i] & 0x0f 
 

(3.47) 

hi4[i] = from_sw[i] & 0xf0 
 

(3.48) 

valve byte[i] = low4[i] + high4[i + noz_ofs] 
 

(3.49) 

 

The resulting valve bytes should be same as the ones originally sent to the 

microcontroller from the image processing computer. 



 114

3.7 Test procedure of precision chemical application system 

3.7.1 Performance of encoder 

In order to observe the operation of the encoder alone on different ground 

surfaces, the precision spraying system was set to spray all 8 valves at a predetermined 

spacing (22.86 cm on soil surfaces & paved roads  and 11.43 cm on smooth concrete 

surfaces) using the image processing computer and the microcontroller.  The image 

processing computer was used only to send the sync bytes to the microcontroller and no 

imaging operation was done during this test.  The gage wheel pressure was set to 138 

kPa.  The distance between each of the two sprayed lines was measured, subtracted from 

the predetermined spacing and considered as errors.  

 

3.7.2 Spray targeting accuracy without imaging 

In order to isolate problems within the scope of the precision spraying system, the 

prototype was set to spray a predetermined “imaginary” weed pattern without taking any 

images and with no targets on the ground. The “imaginary” weed pattern was composed 

of 10 consecutive images, which were replayed from the hard disk.  Each image had 

three or four weeds (targets) in it.  Four types of ground surface (medium tomato bed, 

rough tomato bed, smooth concrete floor, and asphalt) were used to test the system and 

four repetitions were executed for each surface.  The medium bed did not have any 

relatively large dirt clods or bumps on the bed and was a reasonably smooth soil surface, 

whereas the rough bed had big (about 10 cm diameter) dirt clods or bumps and was not 

smooth. The imaginary pattern was sprayed on a 12-image long paper strip (10.16 cm x 

121.9 cm) laid on each surface. 



 115

 After spraying the imaginary weeds, errors were measured by two different 

methods: Method I and Method II.  The Method I was to measure errors from the starting 

line (beginning of the first image) for each test.  The position of each sprayed drop was 

measured from the starting line of the test and the difference between the position of the 

sprayed drops and the position of the imaginary weeds was calculated and considered as 

errors.  

Method II measured the spray errors based on their relative position at the time of 

spraying. The basic idea for this method was that for each image, the reference line for 

measuring spray drop locations should be set at a distance from the sprayed image 

equivalent to the distance traveled between the time the image was taken and the time the 

image was sprayed (i.e., the distance between Line A and Line B in Figure 3.37), to 

avoid artificially high levels of cumulative encoder wheel error.  The positions of the 

actual spray drops were measured based on the line (Line A in Figure 3.37) where the 

camera was aligned at the time of spraying  (Figure 3.37). A grid-printed transparency 

was placed over the sprayed paper and used to measure positions of spray drops.  Then, 

the differences between the position of actual spray drops and the position of imaginary 

weeds were measured and considered as errors.  

This procedure was used because one operating cycle of the prototype system 

started with acquiring an image and ended in spraying weeds in the image.  The errors 

should not be accumulative, but were relative to the time of image acquisition. This 

method more accurately measured the errors based upon the actual operation of the 

prototype. 



 116

l

Image 1Image 2Image 3

. . .

Travel
direction

y
x

Spray
drops

Camera No zzle

Line A Line B Starting
line of test

+ x

+ y

 

Figure 3.37  Measurement of location of spray drops (Method II). 

 

More specifically, the position of the actual spray drops in Image 1 were measured with 

the following procedure as shown in Figure 3.37.  

(i)  Find base line (Line A) of Image 3 from actual spray drops in Image 3 by averaging x 

and y locations of all spray drops in Image 3. 

(ii)  Find base line (Line B) of Image 1 from Line A (two images apart). 

(iii) Put the grid transparency over the paper and align the transparency with Line A and 

Line B. 

(iv) Measure x and y locations of each drop in Image 1 from Line B using a calipers. 

(v)  Repeat the previous three steps for all spray drops. 

 

3.7.3 Spray targeting with imaging on different ground surfaces 

Tests were conducted to evaluate the prototype system as a whole with imaging 

and spraying together.  In order to estimate the spray accuracy of the whole prototype 



 117

system, six tests were conducted, three outdoors and three indoors.  In these tests both 

imaging and spraying operations were conducted.   

First, the prototype system was tested outdoors on two different tomato beds as 

well as a paved road using circular green metal targets (thickness 0.16 cm and diameter 

2.54 cm) and green circular abrasive foam cleaning material (Scrub, 3M™ Inc.) targets 

(thickness 0.5 cm and diameter 2.54 cm).  The targets were considered as “weeds” and 

attached to a 10.16 cm wide strip of corrugated fiberboard using double sided tape in 

order to prevent them from moving.  A look-up table was created with a few training 

images to identify the color of the targets.  The targets were laid down on the bed in rows 

22.86 cm apart in a line of four or five targets perpendicular to the tractor’s direction of 

travel.  Their centroids were sprayed with a blue dye (Precision Laboratories, Inc. 

SIGNAL™) by the robotic precision spraying system after they were detected by the 

computer vision system, while the tractor was moving forward at 0.8 km/h.  The distance 

between the center of the coins and the center of the spray patterns were measured.   

In the indoor experiments, a smooth concrete floor was used to represent an ideal 

surface since it did not have any bumps or dirt clods, which could affect the encoder 

count.  The prototype system was mounted on a cart and pulled manually along the 

center of the paper strip.  The same procedure used outdoors was repeated for the first 

two indoor experiments except that both 2.54 cm and 1.27 cm diameter paper targets 

were used as “weeds”.  In the last indoor experiment, rectangular targets (0.64 cm x 1.27 

cm) which approximated the tomato cotyledon shape and were considered as “tomato 

cotyledons” were also used, while the circular targets (1.27 cm diameter) were 

considered as “weeds”.  In these tests, paper targets were used since metal targets were 



 118

too glossy to be recognized as circular targets and abrasive cleaning material absorbed 

spray drops, producing difficulties in measuring the distance from the center of the spray 

drops.   

 

 

3.8 Procedure for field testing of the prototype system 

3.8.1 Speed of the image processing commands and algorithm 

 Processing time is a major concern in real-time machine vision applications.  

Since the goal of this research was to develop a real-time robotic weed control system, 

computationally intensive steps were avoided.  The processing time of each image 

processing step was measured using the computer clock and a 200 MHz Pentium 

processor was used to process an image. Each execution time was averaged from 1000 

execution times.  In this test, a frame of  a 256 by 240 pixel image representing a 11.43 

cm x 10.16 cm field of view was used with 10 tomato cotyledons in the image using only 

the features of ELG and CMP.  

In an effort to reduce the processing time, some objects were not identified but 

were considered to be weeds if they were at the very top or bottom of an image or if they 

were too small or too big.  Also, the algorithm checked the center and 4 corner points of 

each spray cell in the processed image  in order to determine whether to spray that cell, 

rather than scanning every pixel of the entire image.  Image acquisition time was also 

saved by acquiring only a field instead of a frame and subsampling it columnwise (to 

eliminate distortion). 

 



 119

3.8.2 Field testing of the prototype system 

The prototype robotic weed control system was tested in commercial tomato 

fields in northern California from March to May 1997.  The travel speed was about 0.8 

km/hr and the tomato plants ranged from just emerging up to the first true leaf stage.   

In the actual field test, the following shape features were obtained for each 

binarized plant leaf: area (AREA), major axis (MJX), minor axis (MNX), centroid 

(CNTRD), perimeter (PERIM), compactness (CMP), and elongation (ELG).  These 

features were different than those determined in the plant recognition performance 

section 4.2.2 since the field tests were run before the results of the best feature subset 

(result of section 4.2.2) were obtained and at that time the hardware did not seem to be 

fast enough to handle any more than the above features used in the field tests.   

The centroid (‘+’ sign), major and minor axis, and perimeter from the feature 

extraction process are shown in Figure 3.38 (c). With these features, plant leaves were  

identified either as tomato cotyledons or as weeds for non-occluded leaves using a 

Bayesian classifier.  Shown in Figure 3.38 (d), tomato leaves are identified in green and 

weeds in red.  The algorithm does not spray weeds in any cells adjacent to tomato cells in 

order to protect tomato seedlings from spray drift, Figure 3.38 (e). 

Since the timing for real-time operation is essential, a few preprocessing tests 

were made to reduce the processing time of an image.  In an effort to reduce the 

processing time, objects were not processed and considered to be weeds if they were on 

the very top or bottom of an image or if they are too small or too big.  Also, the algorithm 

checked only the center and 4 corner points of each spray cell in the classified image  in 



 120

order to determine whether to spray that cell, rather than scanning every pixel of the 

entire image.   



 121

                     
(a) Raw image of a tomato seedling  (b) Binary image. 

and weeds in a commercial field.   
 

                    
(c) Feature extraction   (d) Processed image, tomato leaves 

of each object.  in green & weeds in red. 
 

 
(e) Tomato cells (green cell), buffer zone (blue cell), 

and spray zone (red cell) overlaid on the original image. 
 

Figure 3.38 Process of tomato and weed recognition. 



 122

3.9 Cotyledon opening experiment in a field 

 The orientation of plant leaves has a significant impact on the feasibility of 

accurately determining their morphological characteristics from a single top view.  

During field tests in 1996 and 1997, the tomato cotyledons in commercial fields varied in 

their degree of openness. The ‘openness’ of a cotyledon, or ‘cotyledon angle’ can be 

defined as an angle between a cotyledon and an extended axis of the stem from their side 

view (Figure 3.42, page 127). When the images collected during these periods are 

compared with those collected in 1993 and 1994 by Tian (1995), the 96-97 cotyledons 

are considerably more closed. When cotyledons are closed, it is difficult to assess their 

true shape using a single top view increasing the probability that they will be classified as 

weeds since their feature values (e.g., ELG and CMP) become closer to those of 

nightshade or grass weeds.  A fundamental question as to what makes cotyledons open 

and close arose and factors such as temperature, water supply, sunlight or variety were 

considered as possible causes.  

A study was designed to evaluate varietal effects on cotyledon orientation. 

Sixteen tomato varieties (Table 3.20) were selected from the top 50 processing tomato 

varieties produced in 1995 (Processing Tomato Advisory Board). These varieties were 

planted in a 200 ft long single row in May 1997 in an experimental field plot on the 

University of California, Davis campus farm. Each variety was planted with about 2 

seeds per hole in 10 ft long block, each hole was 0.2 ft apart and each block was 2 ft 

apart. At cotyledon stage, video images were taken at different times of the day, i.e., 

morning, afternoon, and evening.  

 
 



 123

Table 3.20 Sixteen varieties used in the cotyledon opening experiment. 
 

Variety Assigned letter 
HALLEY, BOS 3155 A 
HEINZ 8892 B 
BRIGADE C 
HEINZ 3044 D 
HEINZ 9280 E 
PETO NEMA 512 F 
CAMPBELL CXD 152 G 
FM 1047 H 
SUN 5715 I 
HP 108 J 
ORSETTI, BOS 707 K 
HALLEY, BOS 3155 L 
FM PEELMECH M 
CAMPBELL, ALTA N 
FM 6203 O 
CXD 189 P 

 
 

Images were taken on two different days (May 29 and June 2, 1997). On the first 

day, pictures of varieties A through H were taken at 10 AM and 4 PM, and on the second 

day pictures of all sixteen varieties were taken at 8 AM, 4 PM and 8 PM (Table 3.21).  

The number of images for each variety were not same since the cotyledons emerged on 

different dates.  Figure 3.39 shows temperature and relative humidity on these two days 

as measured at the University of California, Davis weather station.  

 
 

Table 3.21 Cotyledon imaging schedule. 
 

Date Time Variety 
Day 1: May 29, 
1997 

10 AM, 4 PM A, B, C, D, E, F, G, H 

Day 2: June 2, 1997 8 AM, 4 PM, 8 PM A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P 
 
 



 124

5

15

25

35

0 4 8 12 16 20 24
Time of the day (H)

Te
m

p 
(C

)

29-May 2-Jun

      

40

60

80

100

0 4 8 12 16 20 24

Time of the day (H)

R
H

 (%
)

29-May 2-Jun

 
 

(a) Temperature. (b) Relative humidity. 
 

Figure 3.39 Temperature and Relative Humidity on May 29 and June 2, 1997  
 at the University of California, Davis Weather Station 

 
 

Two basic cotyledon patterns were observed as illustrated in Figure 3.40 and 

Figure 3.41.  For some varieties (e.g. FM 1047), the cotyledons stayed open from the 

morning to the late afternoon (Figure 3.40 (a) - (d)) and then started closing at dusk 

(Figure 3.40 (e)), becoming  completely closed during the night (Figure 3.40 (f)). 

However, this change does not apply to all plants or varieties. HALLEY, BOS 3155 

show little change at different times of the day (Figure 3.41). 



 125

 

       
(a) 7:00 AM (b) 10:00 AM (c) 5:00 PM 

 

       
(d) 6:00 PM (e) 8:00 PM (f) 1:00 AM 

 
Figure 3.40 Movement of FM 1047 tomato cotyledons at different times of day.  

 
 
 

       
(a) 7:00 AM (b) 10:00 AM (c) 5:00 PM 

       
(d) 6:00 PM (e) 8:00 PM (f) 1:00 AM 

 
Figure 3.41 Movement of HALLEY, BOS 3155 tomato cotyledons at different times of  

day. 
 



 126

After images were acquired and digitized from the video tape, the angle of each 

cotyledon was measured from the side view as in Figure 3.42 using Scion ImagePC 

(National Institutes of Health, USA. 1997. Modified for Windows by Scion Corporation) 

software. The angle of each cotyledon’s openness was quantized as a dimensionless ratio 

of the apparent leaf length from the top (a and b) to the true leaf length from the side (l1 

and l2).  

 
Ratio L = a / l1 (3.50) 
Ratio R = b / l2 (3.51) 

 
The openness of a cotyledon (an angle of a cotyledon), γ can be calculated as in Eq. 

(3.52). 

 
γ = sin ( a / l−1

1) (3.52) 
 
 

                                          

l2l1

ba

 

γ 

Ratio L = a / l1 
Ratio R = b / l2 

 γ = sin − ( a / l1
1) 

 
 

Figure 3.42 Measurement of tomato cotyledon opening. 
 

 
 

An analysis of variance and Tukey’s means test were conducted using the SAS 

GLM procedure (SAS Institute Inc., 1993) to determine if different varieties had 



 127

significantly different cotyledon angles. A GLM analysis was done to determine if the 

average cotyledon angle was different between two days at 4 PM for varieties of A 

through H. The same analysis was done with the data set of 10AM-Day1 and 8AM-

Day2.  

  
Fig. 3.43 Cotyledon angle 

of recognition. 

To determine at what  angle the performance of cotyledon 

recognition affects machine vision recognition, the 

cotyledons were raised from a horizontal position to 

determine the critical angle of recognition. Six tomato 

cotyledons were used to estimate the critical angle. The  

 

cotyledons were put under the camera and raised slowly and continuously. At the critical 

angle the cotyledons switch from being recognized as tomatoes and are recognized as 

weeds by the machine vision system due to their apparent change of shape using only 

ELG and CMP features, similar to the real-time algorithm used in the actual field test 

(section 4.5).  When cotyledons reach this critical angle of recognition, their side and top 

pictures were taken. Then, the critical angle of recognition was calculated from the side 

images as in Figure  3.43. 



 128

3.10 Transgenic purple tomato plants 

Some of the difficulties in real-time machine vision applications are processing 

time and occlusion of objects.  In order to keep up with the conventional cultivation 

speed (~ 3.2 km/hr), the processing speed of the current prototype system needs to be 

increased.  The leaf morphology recognition algorithm has difficulty in recognizing 

tomato plants when plant leaves are overlapped or are at a later growth stage than 

cotyledons.  Figure 3.44 illustrates these problems.  In this example, a weed is growing 

underneath a tomato plant, and they are segmented as one binary object.  In addition, 

since the tomato plant has advanced beyond the cotyledon stage, it is more difficult to 

recognize due to the complexity of the shape. 

 

     

(a) Tomato seedling with a weed (b) Objects recognized as weeds 
             growing underneath.               are shown in red. 

  
Figure 3.44  Example scene showing recognition problems when plants overlap. 

 



 129

 In an attempt to recognize tomato plants beyond the cotyledon stage in real-time, 

the feasibility of identifying tomato plants by their color alone was investigated using 

tomato plants with “purple” foliage.  A group of researchers, including Professor John 

Yoder at UC Davis, developed “purple” tomato plants by introducing the maize 

anthocyanin regulatory Lc gene into the tomato (Goldsbrough et al. 1996).  The 

transgenic purple tomato plants could help solve the occlusion problem and greatly 

increase the processing speed by eliminating many morphological recognition operations.  

Figure 3.45  shows an example of a tomato plant with purple foliage. 

 

 

  

Figure 3.45  Tomato plant with purple foliage. 

 

Utilizing color alone for distinguishing plants from weeds would provide a 

number of advantages from an image processing perspective.  A great advantage is that 



 130

there is no need to extract the morphological features which took about 42.0% of the 

processing time in the morphologically based algorithm (See Chapter 4.4).  This is a 

great saving in processing time.  Using purple tomato plants could also reduce the time 

required for some of the pre-processing steps such as erosion, dilation, shrink, swell and 

deletion of the isolated points since accurate leaf shape is not critical.   

Another significant advantage is that the performance of the prototype would not 

be as affected by partial occlusion of plant leaves.  Since plants in any other color except 

“purple” are weeds, we are no longer worried about partially overlapped plant leaves.  In 

other words, the detection of the whole leaf shape is not needed in order to see color.  In 

addition, the color characteristics could reduce problems associated with wind and 

diurnal change of plant appearance.  It is no longer important that plants are laid down or 

their leaves are not fully open, as long as their color is visible.  Plants older than the 

cotyledon stage could be identified easily and accurately since the shape of occluded 

leaves don’t need to be recognized to see color.   

In order to investigate the feasibility of using color as the sole criteria for recognizing 

tomatoes, purple tomatoes were planted in May 1997 in a 200 ft long row in an 

experimental field at the University of California, Davis. After they had grown to the 

second true leaf stage, top view pictures were taken using a camcorder (Yashica, Model 

KD-H170). The pictures were digitized using the Sharp image processing hardware as 

still images and stored in a hard disk.  Two color look-up tables (LUT) were created 

using some training images, one for purple tomato plants and the other for green weed 

plants. Once the LUTs were made, a computer vision algorithm was developed to 

recognize the purple tomato plants, Figure 3.46.  In order to speed up the process, only 



 131

one pre-processing operation (i.e., erosion) was done for each binary image.  The 

recognition performance is described in section 4.5. 

 

Color
image

Purple LUT

Green LUT

Calculate
valve array

Find spray cells
to be protected

Pre-
processing

Weed binary
image

Purple binary
image

Pre-
processing

Find spray cells
to be sprayed

 

Figure 3.46  Recognition procedure for transgenic purple tomato plants. 

 
 



 132

4. RESULTS AND DISCUSSION 

4.1 LUT performance 

LUT performance was evaluated using binary images created using different 

LUTs based upon different color spaces and using 2 or 3 input classes (i.e., 2 classes: 

plants and background, or 3 classes: tomato plants, weeds, and background).  Fifteen 

validation images (distinct from those in the training set) were chosen randomly among 

the images acquired in 5 different commercial processing tomato fields.  From each 

image, a plant-only and a background-only image were created and the number of 

non-black plant and background pixels, respectively, were counted.  The total number of 

non-black plant pixels in 15 plant-only images was 67333 (= n1) and the total number of 

non-black background pixels in 15 background-only images was 854267 (= n2).   

In this chapter the LUT performance was evaluated by two methods.  The first 

method (Method I) was to use the binary images from LUTs with noise removal 

operation.  The second method (Method II) was to evaluate LUTs with single point noise 

(one pixel noise in the background) removed from the background-only binary images.  

This method was used since single point noise could be easily removed by the Sharp 

board.        

There were three types of noise in the background: single point, small cluster, and 

large cluster (Figure 4.1).  The goal of segmentation was to extract only plant pixels from 

a color image, so the background noise should be removed.  The single point noise 

(Figure 4.1 (b)) was generated when a single pixel with a similar color to a plant pixel in 

the soil background was surrounded by soil pixels that were not similar in color to a plant 

pixel.  However these individual noise pixels were easily removed with a built-in Sharp 



 133

image processing command which removed isolated pixels(s_delisolp).  Small clusters of 

noise were defined as a group of soil or background pixels with an area of less than 50 

pixels which  passed through a LUT as plant pixels (shaded squares in Figure 4.1 (c)).  

Small clusters of noise were removed by using a combination of the built-in Sharp 

commands such as median filtering (s_kmedian), smoothing (s_smooth), binary erosion 

(s_berode), or binary shrink (s_shrink).  

Sometimes a large cluster of noise (larger than plant size, Figure 4.1 (d)) was 

generated either when the pixel value of the noise was not included in the training set for 

LUT  generation or when sunlight penetrated the cultivation tunnel from beneath the side 

shields (as in the right edge of Figure 4.1 (a)), however this type of noise was unusual 

since background pixels from nearly every possible situation were included in the 

training set for LUT generation and the cultivation tunnel was well shielded from 

sunlight most of the time.  This type of noise could be removed by area thresholding once 

the objects were labeled.  If the area of the noise is greater than the area thresholding, it 

would be removed.  When a large cluster of noise was removed by area thresholding, 

plants which had greater  area than the large noise cluster could also be removed, 

however this was an unavoidable trade-off in removing a large cluster of noise.     



 134

          

(a)  Raw color image. (b)  Single point noise from LutRGBC3. 
 
 

          
 

(c)  Noise of small cluster (inside shaded 
square) from LutRGC3. 

(d)  Noise of large cluster (right side and 
bottom of the image) from LutHC3. 

  
Figure 4.1  Types of background noise in binary images. 

 

High levels of background noise had an adverse effect on obtaining accurate plant 

shapes in binary images and on execution times.  Most of the background noise could be 

removed with 3 or 4 successive erosions based on the degree of noise level.  However, 

when there was a lot of background noise, the noise affected plant shape recognition 

since plant pixels are also removed when too many successive erosions were conducted. 



 135

It is important to keep plant pixels from being removed in a binary image pre-processing 

step while removing the background noise at the same time. 

 

Method I

Table 4.1 shows LUT performance, ranked by their background error rate.  The 

LUT made with H, S, and I components and three input classes (LutHSIC3) showed 

superiority in removing noise from the background-only image.  The LUT made with r 

and g color components and three input classes (LutrgC3) produced the most error in 

binary conversion for background-only images.  These facts indicated that the I 

component helped to remove the background noise since the plane composed of r, g, and 

b components (r + g + b = 1) in rgb color space is perpendicular to the I axis.  

      

Table 4.1  LUTs listed by Background error rate and number of pixels removed  
by 1 erosion in the background-only image. 

 
Rank LUT Background 

error rate 
(%) 

No. of pixels 
before erosion

No. of pixels 
after erosion 

Pixels 
removed 

(%) 
1 LutHSIC3 1.67 1267 0 100.00 
2 LutRGBC2 3.46 1345 0 100.00 
3 LutRGC2 4.21 2074 27 98.70 
4 LutRGBC3 4.21 1593 0 100.00 
5 LutHSC3 4.35 5691 103 98.19 
6 LutHSIC2 4.96 2178 0 100.00 
7 LutRGC3 5.05 2262 30 98.67 
8 LutrgC2 9.19 10923 1404 87.15 
9 LutHSC2 9.21 10842 905 91.65 
10 LutHC2 10.54 12200 2047 83.22 
11 LutHC3 10.69 12226 2047 83.26 
12 LutrgC3 11.17 11906 1992 83.27 

 



 136

Regarding the background noise, it is interesting to know how many pixels could 

be removed by a single noise removal operation.  Table 4.1 also shows the number of 

pixels removed by one erosion for the background-only binary image for each LUT.  In 

the background-only binary image, over 83.22% of noise (four of the 12 LUTs had 

100.00% removal) were easily removed using only one erosion for all LUTs.  Figure 4.2 

shows an example of the effect of 1 erosion on the number of pixels removed in 

background-only and plant-only binary images.  This example image is an extreme case 

since unwanted sunlight came in on the right side of the image.  However, if the 

appropriate look-up-table (LutRGBC3) is used for binarization, the background noise is 

completely removed as well as keeping most plant pixels (Figure 4.2 (h) and (i)). 

The execution time for the built-in Sharp commands for removing background 

noise, deletion of single noise (s_delisolp), binary erosion (s_berode), and binary 

shrinking (s_shrink) took about 3 ms, and median filtering (s_kmedian) took about 6 ms 

with an image of  256 x 240 pixels containing about 10 objects.  The typical 

pre-processing steps executed on a binary image (Table 3.3) were composed of 1 deletion 

of isolated pixels, 1 binary erosion, 1 binary dilation, 4 binary shrinkings, and 3 binary 

swellings, thus several steps (over 10 ms) could be saved if there was less noise in the 

segmented image.  



 137

         

(a) Background-only image. (b) Binary image from  
LutHC2. 

(c) Eroded image of (b). 

 

         

(d) Plant-only image. (e) Binary image from 
LutHC2. 

(f) Eroded image of (e). 

 

         

(g) Whole color image. (h) Binary image from 
LutRGBC3. 

(i) Eroded image of (h). 

   
Figure 4.2 Effect of 1 erosion on background-only and plant-only binary images.  

 



 138

All in all, background noise was not a big problem since it was relatively easy to 

eliminate in most circumstances.  Plant error rate was more important than background 

error rate since accuracy in extracting plant pixels from a raw color image was more 

closely related with plant shape recognition.   Therefore, the LUTs were evaluated by 

their plant error rate even though the better LUTs for plant-only image produced more 

large clusters of noise than other LUTs as discussed further in this chapter. 

Table 4.2 shows the LUTs listed by their plant error rate, the number of plant 

pixels not passed through LUTs (= n1 - n3), and the number of background pixels 

incorrectly passed through LUTs (= n4).  It also shows the plant error rate, background 

error rate and total error rate for each LUT.  

 

Table 4.2  Number of pixels passed through each LUT and their performance  
listed by their plant error rate.  

 
LUT  
name 

n1 - n3 n4 Plant error 
rate (%) 

Background 
error rate (%) 

Total error 
rate (%) 

LutHC3 7719 91306 11.5 10.7 22.2 
LutHC2 7973 90030 11.8 10.5 22.4 
LutrgC3 8037 95390 11.9 11.2 23.1 

LutHSC2 8789 78654 13.1 9.2 22.3 
LutrgC2 9153 78480 13.6 9.2 22.8 

LutRGBC3 11486 35986 17.0 4.2 21.3 
LutRGC3 11510 43110 17.1 5.1 22.1 

LutRGBC2 12258 29581 18.2 3.5 21.7 
LutHSIC2 12326 42381 18.3 5.0 23.3 
LutRGC2 12394 35958 18.4 4.2 22.6 
LutHSC3 15147 37167 22.5 4.4 26.9 

LutHSIC3 17792 14254 26.4 1.7 28.1 
 

The performance of a LUT could be evaluated by its total error rate since this tells 

how many pixels were accurately passed through LUT for a given number of input pixels.  



 139

The LutRGBC3 produced the least total error rate and the LutHSIC3 produced the most 

error in binary conversion.  However, as discussed before in this chapter, the noise in the 

background was not a big problem since these pixels were relatively easy to remove in 

most situations.  

The LUT built using only the H component and three input classes (LutHC3) 

produced the most plant pixels in the plant-only binary images.  The LUT with H, S, and 

I components and three input classes (LutHSIC3) produced the largest plant error rate in 

the plant-only binary images.   

 

 

             

(a)  Plant-only color image. (b)  Binary image from 
LutHC3. 

(c)  Binary image from 
LutHSIC3. 

   
Figure 4.3  Effect of LUTs on a plant-only image. 

 

 

It is important to find out that in each color space, how many input classes and 

which color components produced better LUTs and then, which color space was better 

than others.  For example, in implementing a LUT, it is very important to know that 

LutHSC2 is better than LutHSC3 since these two LUTs have the same color components 



 140

but different number of input classes or that LutHSC2 is better than LutRGC2 (same 

number of input classes but different color components).   

In RGB color space, when the same number of input classes were used, there was 

little difference between the LUT made with R, G, and B components (LutRGBCi) and 

the LUT made with R and G components (LutRGCi).  There was no difference between 

the LUT made with R, G, and B components (LutRGBC3) and the LUT made with R and 

G components (LutRGC3) when three input classes (i.e., tomato plant, weed and 

background) were used. When two input classes (plant and background) were used, the 

LUT made with R, G, and B components (LutRGBC2) was a little better than the LUT 

made with R and G components (LutRGC2).  Example binary images from these LUTs 

are shown in Figure 4.4.  

The LUTs made with the 3 input classes of tomato plants, weed and background 

(LutRGBC3 and LutRGC3) produced a lower total error rate than those made with 2 

input classes of plants and background (LutRGBC2 and LutRGC2) in RGB color space.  

This fact could indicate that there were slight differences between tomato plants and 

weeds that were useful in building a LUT.  However, if the difference was calculated in 

terms of the actual average number of pixels per image (Table 4.3), the difference was 

only 51.5 pixels per image (= 817.2 pixels - 765.7 pixels) between LutRGBC3 and 

LutRGBC2 and 59.0 pixels per image (= 826.3 pixels - 767.3 pixels) between LutRGC3 

and LutRGC2.  The difference of 51.5 pixels and 59.0 pixels were only 1.1% and 1.3% of 

average number of plant pixel per image (= 4488.9 pixels = 67333 pixels / 15 images) 

and could come from the separation step of plant-only and background-only images.  



 141

Therefore, LUTs with 3 input classes were a little better than those with 2 input classes, 

but the difference was negligible in RGB color space.  

  

Table 4.3 LUT performance with respect to the number of input classes. 

LUT name No. of plant 
pixel, 

n1

No. of correctly 
passed pixel, 

n3

No. of 
incorrectly 

removed pixel, 
n1 - n3

No. of 
incorrectly 

removed pixel 
per image, 

(n1 - n3) / 15 
LutRGBC3 67333 55847 11486 765.7 
LutRGBC2 67333 55075 12258 817.2 
LutRGC3 67333 55823 11510 767.3 
LutRGC2 67333 54939 12394 826.3 

 



 142

 

(a)  Original color image. 

                   

(b)  Binary image from LutRGBC2. (c)  Binary image from LutRGBC3. 

 

                   

(d)  Binary image from LutRGC2. (e)  Binary image from LutRGC3. 

 

Figure 4.4  Effect of different LUTs on binary image quality in RGB color space. 



 143

In HSI color space (Figure 4.5), the LUTs built using only the H component 

(LutHC3 and LutHC2) were better than those made with H and S components (LutHSC2 

and LutHSC3) and those made with H, S, and I components (LutHSIC2 and LutHSIC3) 

in terms of plant error rate.  Adding the S and the I components to the H component did 

not produce better results in LUT performance. Adding the I component to a LUT made 

with H and S components produced a lot more error when two or three input classes were 

used, i.e., 13.1% plant error rate for LutHSC2 vs. 18.3% plant error rate for LutHSIC2 

and 22.5% plant error rate for LutHSC3 vs.  26.4% plant error rate for LutHSIC3.  The I 

component did not help the performance of the LUTs in terms of plant error rate.  This 

might be because any change in the camera aperture produced intensity variations among 

pictures when they were acquired from field to field.   

Regarding the number of input classes used in HSI color space, the LUTs made 

with 2 input classes, plants and background (LutHSC2 and LutHSIC2), produced much 

less plant error than those made with 3 input classes (LutHSC3 and LutHSIC3).  More 

specifically, when the H and the S components were used to make LUTs, the LUT with 2 

input classes (LutHSC2) was better than the one made with 3 input classes (LutHSC3).  

When the H, S, and I components were used to make LUTs, the LUT made with 2 input 

classes (LutHSIC2) was also better than the one made with 3 input classes (LutHSIC3).  

These facts were in disagreement with the results in RGB color space.  However, Figure 

3.14 (d) on page 52 shows there is no separation of plant and background using the S and 

the I components.  Because S and I components were essentially noise, the 2 vs. 3 class 

conclusions based on S or I components were not meaningful.  Thus, if only the LUTs 

with the H component were considered, the total error rate with 3 input classes (LutHC3) 



 144

were slightly better than the LUT with 2 input classes (LutHC2), but the difference was 

probably negligible (22.2% vs. 22.4%), similar to that found in RGB color space.  In this 

case the total error rate was used since the Bayes classifier was built in a way that it 

minimized  the total error rate.  

Comparing the binary images in Figure 4.5, the LutHC2 and LutHC3 generated 

more background noise than LutHSC2, LutHSC3, LutHSIC2, and LutHSIC3. However, 

as discussed previously, since the background noise could be removed easily and LutHC2 

and LutHC3 produced more plant pixels, hue based LUTs were better than the others.  



 145

 

(a)  Color image. 
 

                           
(b)  Binary image from LutHC2.  (c)  Binary image from LutHC3. 

 

                           
(d)  Binary image from LutHSC2.  (e)  Binary image from LutHSC3. 

 

                           
(f)  Binary image from LutHSIC2.  (g)  Binary image from LutHSIC3. 

 
Figure 4.5  Effect of H, S, and I component on LUT performance. 



 146

In rgb color space, the LUT made with 3 input classes (LutrgC3) was a little 

better than  the one made with 2 input classes (LutrgC2).  Example binary images in rgb 

color space are shown in Figure 4.6. 

Tian (1995) reported that using r, g, and b components produced a better LUT 

than a LUT in RGB color space, since it eliminated the effect of I component to LUT. In 

this research the same result was confirmed in terms of plant error rate since the aperture 

of the  camera was changed when pictures were acquired from field to field and both the 

object reflectance levels and illumination levels contributed to intensity variations in an 

image.   

 

         

(a)  Color image. (b)  Binary image from 
LutrgC2. 

(c)  Binary image from 
LutrgC3. 

   
Figure 4.6  Effect of number of input class on LUT performance in rgb color space. 

 

 

In summary, the LUTs made in HSI color space were generally better than those 

made in rgb color space and RGB color space and the LUTs built in rgb color space were 

better than those in RGB color space.  In HSI color space, the I component didn’t help the 

performance of LUTs in terms of plant error rate and this may explain the superior 



 147

performance of the LUTs made in rgb color space to those made in RGB color space. The 

LUTs built with only the H component (LutHC2 and LutHC3) produced the least plant 

error rates, correctly classifying 77.8% of color pixels.    

 

Method II

The LUTs were also evaluated with single point noise (isolated pixels) removed 

from the binary images since most of the background-only binary image noise consisted 

of isolated pixels, which could be easily removed by the image processing system.  For 

the second evaluation of LUTs, the isolated pixels were removed before counting the 

number of pixels in the segmented plant-only and background-only binary images.  The 

results are listed in Table 4.4, however the results were similar to those from method I.  

 

Table 4.4  LUTs listed by rank for each of the three error categories  
after isolated points were removed.  

 
Rank Plant error rate 

(%) 
Background 

error rate (%) 
Total error 

rate (%) 
1 LutHC3 (11.5) LutHSIC3 (1.0) LutRGBC3 (20.3) 
2 LutHC2 (11.9) LutRGBC2 (2.6) LutRGBC2 (20.8) 
3 LutrgC3 (12.0) LutRGBC3 (3.2) LutRGC3 (21.2) 
4 LutHSC2 (13.1) LutRGC2 (3.3) LutHSC2 (21.3) 
5 LutrgC2 (13.6) LutHSC3 (3.5) LutHC3 (21.3) 
6 LutRGBC3 (17.1) LutHSIC2 (3.8) LutHC2 (21.6) 
7 LutRGC3 (17.2) LutRGC3 (4.0) LutRGC2 (21.8) 
8 LutRGBC2 (18.3) LutHSC2 (8.2) LutrgC2 (21.9) 
9 LutHSIC2 (18.4) LutrgC2 (8.3) LutrgC3 (22.1) 
10 LutRGC2 (18.5) LutHC2 (9.7) LutHSIC2 (22.1) 
11 LutHSC3 (22.6) LutHC3 (9.9) LutHSC3 (26.1) 
12 LutHSIC3 (26.5) LutrgC3 (10.1) LutHSIC3 (27.5) 

 

 



 148

There were three changes in LUT rank (LutRGBC3 and LutRGC2, LutHSC2 and 

LutrgC2 in Background error rate, LutHSC2 and LutHC3 in Total error rate), but their 

difference was almost negligible.   



 149

4.2 Plant recognition performance 

4.2.1 Cotyledon opening experiment results 

There were some limitations in implementing the robotic weed control system in 

real-time. The first constraint was determining the morphological characteristics of 

tomato plants in real-time from a single top view.  Even when the image quality was 

good and there was no wind, there was still another difficulty affecting plant recognition 

performance, diurnal changes in plant appearance.  The orientation of plant leaves and 

changes in leaf position according to the environmental condition had a significant 

impact on the feasibility of accurately determining their morphological characteristics 

from a single top view.   

A study was designed to evaluate varietal effects on cotyledon orientation using 

sixteen tomato varieties. The degree of openness of tomato cotyledons varied with 

environmental stresses such as lack of soil moisture and high temperature and cotyledons 

responded to environmental conditions by opening or closing.  In a few cases there were 

tomato plants with three cotyledons, which also could make the recognition difficult. 

 

Time of day effect

An analysis of variance and Tukey’s means test was done with the 8AM-Day2, 

4PM-Day2, and 8PM-Day2 data sets for varieties A through P to find out if different 

varieties had significantly different cotyledon angles at different times.  These analyses 

showed that cotyledon angle is not significantly different (α = 0.05) between 8AM and 

4PM, however, 8PM is significantly different than the earlier times. The maximum mean 

change in cotyledon angle was 14.3° between 8AM and 8PM, which can be clearly seen 



 150

between Figure 3.40 (a) and (e) on page 126.  The result from a second analysis with the 

10AM-Day1 and 8AM-Day2 data sets showed that the effect of date, variety, and date & 

variety interaction had no effect on cotyledon opening in the morning.  However, only 

the result with the 10AM-Day1 and 8AM-Day2 data sets showed no varietal or date 

effects and there was a significant difference later in the day (8PM).   

 

Varietal effect

The following figure shows the effect of variety on cotyledon opening using the  

average value for each variety on Day 2.  The cotyledon angle of those varieties with the 

same underline are not significantly different. The maximum mean difference of 

openness  was 13.7° between varieties D and P. 

 

  
 D    C    G    F    A    B    N    I    E    L    O    J    H    K     M   P 

  
  

 
Since the majority of the change in cotyledon angle occurred at night, an analysis 

of variance and Tukey’s means test was done with Day2-8PM data set for all sixteen 

varieties. These results showed that the varieties were generally clustered into two 

groups: more open and less open. The more open group was composed of varieties D, C, 

B, and E and the less open group was composed of varieties L, M, H, and J. Three 

histograms were drawn for these two groups at different times of day to show the group 

differences (Fig. 4.7).  

 



 151

There is not much difference between the more open group and the less open 

group at 8 AM and 4 PM (Fig. 4.7 (a) and (b)). However, at 8 PM (Fig. 4.7 (c)), the 

difference between cotyledon angle is greater. The maximum difference observed was 

17.3° between varieties D and J.   

 

0

4

8

12

0 20 40 60 8
Cotyledon angle (deg)

C
ou

nt

0

DCBE 8AM LMHJ 8AM

       

0

4

8

12

0 20 40 60 8
Cotyledon angle (deg)

C
ou

nt

0

DCBE 4PM LMHJ 4PM

 
 

(a) 8:00 AM (b) 4:00 PM 
 

0

4

8

12

0 20 40 60 8
Cotyledon angle (deg)

C
ou

nt

0

DCBE 8PM LMHJ 8PM

 
 

(c)  8:00 PM 
 

Fig. 4.7 Histograms of cotyledon angles at different times of the day. 
 

 



 152

Daily effect

The results from the analysis with the 4PM-Day1 and 4PM-Day2 data sets 

showed that the average cotyledon opening is significantly different between these two 

days. The daily average mean ratio (as defined in Eq. (3.50) and Eq. (3.51)) on Day 2 

(0.545) was a little higher than the one on Day 1 (0.489).  However, when the mean ratio 

difference (i.e., 0.056) is converted into a cotyledon angle, it is only 3.2° for a cotyledon 

(or total angle of 6.4° for a seedling) from the side view. Thus, the difference is not 

meaningful from a practical point.  This small difference might have been caused by 

temperature difference between two days. Day 1 was about 3.5°C warmer than Day 2 

(Fig. 3.39 (a), page 125).  It is speculated that the cotyledons close in an attempt to 

minimize moisture loss on hot days. The variety effect on the opening was not significant 

(α = 0.05) between these two days. 

This theory was confirmed in a commercial farm during field testing one 

morning. We started testing the prototype machine vision system, and the cotyledons 

were well open, but started closing in the afternoon as the temperature increased. 

However, at the same time, we observed that the cotyledons were more open in another 

part of the same field. These plants had just been watered by a single sprinkler set 

running on that portion of the field. On the other hand, the cotyledons near the prototype 

system were not yet watered and stayed closed. This behavior confirmed that cotyledon 

openness is closely related to environmental stresses such as lack of soil moisture and 

high temperature and that cotyledons respond to these environmental stresses by opening 

or closing. 



 153

The average value of the critical angle of recognition, γ, was found to be 27.5°. 

When the cotyledon was raised manually as shown in Figure 3.43, the normally long and 

thin elliptical appearance of the cotyledon started to look shorter and round from a top 

view.  When it reached the critical point (critical angle of recognition), it began to look 

like a round object which led to being recognized as weed.  In this test, the features ELG, 

CMP, and AREA were used to recognize tomato cotyledons.  The range of values for 

these features were obtained from the data base under non-stressed conditions and if the 

values of these 3 features of an object were all within these ranges, then it was 

recognized as tomato cotyledon.  Otherwise, the object was recognized as weed.  Thus, if 

the total angle between two cotyledons is smaller than 55.0°, the machine vision system 

could not recognize tomato cotyledons as tomato leaves.  

 In summary, the results indicate that the cotyledon angle was significantly 

different at the same time of a day between two days which differed by 3.5°C in 

temperature, but the mean difference was not practically meaningful. The cotyledon 

angle of some varieties does not change from morning to dusk, but starts to close at dusk, 

becoming completely closed at night. The variety effect on cotyledon angle on Day 2 had 

a lot of variability in the data set. The maximum average daily difference of cotyledon 

angle among varieties was 13.7°.  At night, some varieties close completely, but some 

don’t. The maximum average difference of cotyledon opening between varieties was 

17.3° at 8 PM.  The critical angle of recognition was estimated as 27.5° for a tomato 

cotyledon.  

Recognition difficulties caused by diurnal changes or plants lying down due to 

wind might be solved by incorporating a side view of the plants with the top view.  



 154

However, it would take longer and would be more complicated to process two views of 

the same scene.  

 

4.2.2 Bayesian classifier with features 

To identify tomato plants and weeds in real-time, an optimal subset of the 35 

features described in sections 2.1, 3.3.3.7 and 3.4 must be selected.  The following results 

show which features were selected using the three methods described in section 3.4.  

 
Method I

 The first method was to use canonical discriminant analysis and principal 

component analysis to choose the best features by removing any useless features and to 

take advantage of the large feature set, but at the same time to eliminate the problems 

with multi-colinearity.  This method produced the best solution regardless of cost (time).  

 The first step tested the hypothesis that class means were equal for each input 

feature.  Univariate analyses were conducted with each input feature from the training 

images in the good group and the results are given in Table 4.5. 

Based on the univariate test results for the good training set, the following 8 

features were removed since the F-test showed that their class means were not 

significantly different at the 0.01 significance level.  

 

⇒ Features removed based on univariate analysis:  

YCNTRD, MAXC, LHW, SUMINV, M11, PRINAXIS, MTMC, CTC 

 



 155

Table 4.5 Univariate test results showing that the class means for 8 features (bold  
characters) were not significantly different at 0.01 level in the good 
training set. 

 
 

Univariate Test Statistics 
F Statistics,    Num DF= 2   Den DF= 400 

  
                       Total                      RSQ/ 
         Variable        STD    R-Squared      (1-RSQ)          F        Pr > F 
 
         AREA       374.4265     0.167834       0.2017       40.3365     0.0001 
         YCNTRD      56.9603     0.000482       0.0005        0.0964     0.9081 
         PERIM       55.6139     0.195997       0.2438       48.7553     0.0001 
         MJX         17.2040     0.227899       0.2952       59.0334     0.0001 
         MNX         10.2414     0.197973       0.2468       49.3681     0.0001 
         ELG          0.1494     0.348996       0.5361      107.2178     0.0001 
         CMP          0.2547     0.171447       0.2069       41.3848     0.0001 
         MAXC        68.2608     0.010921       0.0110        2.2082     0.1112 
         MINC       158.1438     0.090821       0.0999       19.9786     0.0001 
         AVGC        43.2000     0.197440       0.2460       49.2025     0.0001 
         AVGABSC     34.2269     0.176877       0.2149       42.9769     0.0001 
         STDEVC      33.6119     0.023177       0.0237        4.7454     0.0092 
         NEG          4.1903     0.188728       0.2326       46.5264     0.0001 
         ATL          4.7415     0.177190       0.2153       43.0694     0.0001 
         PTB          0.0893     0.112024       0.1262       25.2314     0.0001 
         LHW          0.2416     0.010279       0.0104        2.0772     0.1266 
         LTP          0.0455     0.271551       0.3728       74.5559     0.0001 
         SUMINV       0.7020     0.004524       0.0045        0.9090     0.4038 
         ABSUMINV     0.8667     0.031720       0.0328        6.5519     0.0016 
         WID         13.5155     0.149675       0.1760       35.2041     0.0001 
         HET         16.2725     0.172868       0.2090       41.7993     0.0001 

         M20           66902     0.075565       0.0817       16.3484     0.0001 

         M02          101692     0.071527       0.0770       15.4074     0.0001 

         M            39259     0.011942       0.0121        2.4173     0.0905 11
         PRINAXIS    24.9279     0.003474       0.0035        0.6972     0.4986 
         ATP          0.1440     0.120266       0.1367       27.3414     0.0001 
         MTM          0.7647     0.361780       0.5669      113.3715     0.0001 
         OCCR         0.1139     0.199287       0.2489       49.7775     0.0001 
         PTP          0.0381     0.190322       0.2351       47.0118     0.0001 
         MTMC        39.9677     0.005944       0.0060        1.1958     0.3035 
         ATC          7.5361     0.155176       0.1837       36.7358     0.0001 
         PTC          1.1128     0.206263       0.2599       51.9726     0.0001 
         ETC          0.3095     0.288956       0.4064       81.2767     0.0001 
         CTC          0.4314     0.006631       0.0067        1.3351     0.2643 
         ECCN       19426728     0.050902       0.0536       10.7264     0.0001 

 
 
 

Therefore, the canonical discriminant analysis was conducted with the remaining 27 

features.  These 27 features will also be used for any further analysis unless stated 

otherwise.   

⇒ Remaining 27 features used for canonical discriminant analysis: 



 156

 AREA, PERIM, MJX, MNX, ELG, CMP, MINC, AVGC, AVGABSC, STDEVC,  

NEG, ATL, PTB, LTP, ABSUMINV, WID, HET, M20, M02, ATP, 

MTM, OCCR, PTP, ATC, PTC, ETC, ECCN  

The result of the canonical discriminant analysis is given in Tables 4.6 and 4.7.  

From canonical discriminant analysis for the good training set (Table 4.6), the squared 

distances between classes were 6.6 between class 1 and class 2, 5.6 between class 1 and 

class 4, and 3.0 between class 2 and class 4.  This indicated that the separation of class 1 

from the classes 2 and 4 would be easier than the separation of class 2 from class 4.  For 

the bad training set (Table 4.7), the squared distances between classes showed more 

difficulties since the distances were closer than for the good training set (4.0 between 

class 1 and class 2, 2.4 between class 1 and class 4, and 1.9 between class 2 and class 4).    

The multivariate test for differences between the classes was significant at the 

0.0001 level using Wilk’s Λ test and other tests (Tables 4.6and 4.7).  Thus, the mean for 

each input feature was significantly different between classes.  

The R2, given by the squared canonical correlation in Table 4.10 for the good 

group, was 0.455 between CAN1 (canonical variable 1)  and class variables and 0.363 

between CAN2 and class variables and the cumulative proportion of eigenvalues 

explained was 1.0 (100%) with CAN1 and CAN2.  For the bad training set, Table 4.7, the 

cumulative proportion of eigenvalues also explained 1.0 with CAN1 and CAN2.    

Thus, using these two (CAN1 and CAN2) variables, the first 20 features were 

preliminary selected based on the magnitude of their raw canonical coefficients for each 

canonical variable from canonical discriminant analysis. These features are listed in 

Table 4.8 in the order of absolute magnitude of their raw canonical coefficients.  These 



 157

raw canonical coefficients were produced from the input training data set, which were 

first standardized (mean = 0 and standard deviation = 1).  Then, all features which were 

used in both CAN1 and CAN2 in the good group as well as in both CAN1 and CAN2 in 

the bad group (i.e., the features which appeared 4 times in the first 20 features) were 

selected as the best subset for discriminant analysis (also listed in alphabetical order in 

Table 4.8).  Figure 4.8 shows a scatter plot of the good training samples using the 

variables of CAN1 and CAN2.  In this figure, class 1 is well separated from classes 2 and 

4, however there is  some overlap between class 2 and class 4.  Figure 4.9 shows the same 

scatter plot for the training set in the bad group, which indicates more overlap between 

class 1 and class 4 and between class 2 and class 4. 

 



 158

Table 4.6  Canonical discriminant analysis for good training set. 

 

Canonical Discriminant Analysis     Pairwise Squared Distances Between Groups 

 
                        2         _   _       -1  _   _   
                       D (i|j) = (X - X )' COV   (X - X ) 
                                   i   j           i   j  
 
                         Squared Distance to CLASS 
  
          From CLASS                1                2                4 
 
                   1                0          6.59227          5.60150 
                   2          6.59227                0          2.96972 
                   4          5.60150          2.96972                0 
 
 
 

 
Multivariate Statistics and F Approximations 
 
                              S=2    M=12    N=186 
 
  Statistic                     Value          F      Num DF    Den DF  Pr > F 
 
  Wilks' Lambda              0.34707175     9.6606        54       748  0.0001 
  Pillai's Trace             0.81821360     9.6160        54       750  0.0001 
  Hotelling-Lawley Trace     1.40502047     9.7050        54       746  0.0001 
  Roy's Greatest Root        0.83401097    11.5835        27       375  0.0001 
 
          NOTE: F Statistic for Roy's Greatest Root is an upper bound. 
                 NOTE: F Statistic for Wilks' Lambda is exact. 

 

 
Canonical Discriminant Analysis 
 
                                 Adjusted       Approx       Squared   
                  Canonical      Canonical     Standard     Canonical  
                 Correlation    Correlation     Error      Correlation 
 
            1      0.674349       0.643287     0.027195      0.454747  
            2      0.602882       0.576231     0.031747      0.363467  
 
                                 Eigenvalues of INV(E)*H 
                                   = CanRsq/(1-CanRsq)   
  
                  Eigenvalue    Difference    Proportion    Cumulative 
 
             1       0.8340        0.2630       0.5936        0.5936   
             2       0.5710         .           0.4064        1.0000   
 
                      Test of H0: The canonical correlations in the 
                        current row and all that follow are zero 
  
                Likelihood 
                   Ratio      Approx F      Num DF      Den DF    Pr > F 
 
           1    0.34707175      9.6606          54         748    0.0001 
           2    0.63653339      8.2357          26         375    0.0001 

 



 159

Plot of CAN2*CAN1.  Symbol is value of CLASS. 
 
CAN2 | 
   5 + 
     | 
     | 
     | 
     | 
   4 +           2  2 
     |              2 
     | 
     | 
     |                               2 
   3 +              2     2     2            1 
     | 
     |                    22   2      2 
     |                     2     2  2 2 
     |                2 2 2    2   2 
   2 +                2 2 222    2    1            1 
     |            4    2 222  2     2             2             1 
     |                2 22  2      24 
     |                4  4      4 22 22   41   1 
     |                  2422 42         2 1 
   1 +           2     24 22      2         2     1 
     |                24 4 4 4 22 4  2     412    1 1            1 
     |                    442242 4      1 114    2 11           1 
     |                  2 422 2 24   44    2 1121 111 12      1 
     |                2 2422   22  242  244 11 1 11 4221   1 11 
   0 +                2  2444444 22 44   14 2 111    14  1 
     |                    444 42 24 2  2 4  411         1 1           1 
     |                       4 2 42444142    411 1    1  1  4 
     |                    42  42 4 44  1441 1  4  1    4 
     |                    4 44441444244 1  41 
  -1 +                   42 4444 44       4   4 
     |                     44424 441 14 
     |                     44444 4  444   4 
     |                      4244 4 
     |                  4    44  4 4 4 
  -2 +                      4 44 
     |                     44    4 
     |                    4 4   4 
     |                     4  44 
     |                     4 
  -3 +                    444 
     |                    4 
     | 
     | 
     | 
  -4 + 
     | 
     --+-------------+-------------+-------------+-------------+-------------+-- 
      -4            -2             0             2             4             6 
 
                                         CAN1 
 
NOTE: 116 obs hidden. 
 

 
Figure 4.8  Plot of canonical variables 1 and 2 for good training set.  



 160

Table 4.7  Canonical discriminant analysis for bad training set. 

 
Canonical Discriminant Analysis     Pairwise Squared Distances Between Groups 
 
                        2         _   _       -1  _   _   
                       D (i|j) = (X - X )' COV   (X - X ) 
                                   i   j           i   j  
 
                         Squared Distance to CLASS 
  
          From CLASS                1                2                4 
 
                   1                0          4.02095          2.48426 
                   2          4.02095                0          1.90409 
                   4          2.48426          1.90409                0 
 

 
 

Multivariate Statistics and F Approximations 
 
                             S=2    M=12    N=155.5 
 
  Statistic                     Value          F      Num DF    Den DF  Pr > F 
 
  Wilks' Lambda              0.48791701     5.0036        54       626  0.0001 
  Pillai's Trace             0.59463400     4.9207        54       628  0.0001 
  Hotelling-Lawley Trace     0.88033819     5.0864        54       624  0.0001 
  Roy's Greatest Root        0.59687950     6.9415        27       314  0.0001 
 
          NOTE: F Statistic for Roy's Greatest Root is an upper bound. 
                 NOTE: F Statistic for Wilks' Lambda is exact. 
 

 
 

Canonical Discriminant Analysis 
 
                                 Adjusted       Approx       Squared   
                  Canonical      Canonical     Standard     Canonical  
                 Correlation    Correlation     Error      Correlation 
 
            1      0.611374       0.568668     0.033912      0.373779  
            2      0.469952       0.414112     0.042193      0.220855  
 
                                 Eigenvalues of INV(E)*H 
                                   = CanRsq/(1-CanRsq)   
  
                  Eigenvalue    Difference    Proportion    Cumulative 
 
             1       0.5969        0.3134       0.6780        0.6780   
             2       0.2835         .           0.3220        1.0000   
 
                      Test of H0: The canonical correlations in the 
                        current row and all that follow are zero 
  
                Likelihood 
                   Ratio      Approx F      Num DF      Den DF    Pr > F 
 
           1    0.48791701      5.0036          54         626    0.0001 
           2    0.77914468      3.4233          26         314    0.0001 

 



 161

Plot of CAN2*CAN1.  Symbol is value of CLASS. 
 
CAN2 | 
     | 
   4 + 
     | 
     | 
     | 
     |                                                  2 
   3 +                                                   2 
     | 
     |                    1 
     |                        1 
     |                              1                        2 
   2 +                                    2       2 2  2  2 
     |         4    1    1                       2 2    2   2 
     |         4    1     1    1   2      4   4 2          2         2 
     |     1          11  1 4    11           422   2     2 
     |             21 1111  2441 2 21   2         2 2     2 
   1 +             1 1111121 12              2 2  2 2  2 
     | 4           1 141 41 1          2    24     2 24  22 
     |              11 4   41 1 2        2   4    2  22 
     |               1     4   1       2 2 222   2 422 
     |             1  411  1 1 4 11  4224      2 422      2 
   0 +            1 14 21 12 12 12     2  4 24     42     2 
     |            1  411141  21    2    4214 2  4242     22         4 
     |             1   1 44 1 42  44 4 4       424      2 4        4 
     |           4       44   44        2444    2  2 2 
     |                11  44 4 2     444    4 42     24     2 
  -1 +           4     14  4         4 22   44 2  44 2   4 
     |              1  4  1 44 4    4 1   44 2    44   2 
     |                        1    1 4 24  2         4 2 
     |               4                444   44 4  4 
     |                 1    1   4              4      4 4  4  4 
  -2 +                 4  4 4 
     |                      4                2 
     |                      4         1   4      4 
     |                   4                    4 
     |               4  4 
  -3 + 
     |                                   4 
     |          4 
     | 
     | 
  -4 + 
     | 
     --+---------+---------+---------+---------+---------+---------+---------+-- 
      -3        -2        -1         0         1         2         3         4 
 
                                         CAN1 
 
NOTE: 61 obs hidden. 
 

 

Figure 4.9  Plot of canonical variables 1 and 2 for bad training set. 



 162

Table 4.8 Result of canonical discriminant analysis for good and bad training sets.  

Good training set Bad training set Features Chosen 
CAN1  CAN2 CAN1 CAN2  
LTP LTP PTP LTP AVGABSC 
ELG PTB LTP PTB ABSUMINV 

OCCR ETC PTB PTP ATL 
CMP ATP ATP OCCR ATP 
PTB OCCR ETC ELG CMP 
ETC CMP OCCR ATP ELG 
PTP PTC ELG ETC ETC 
ATP ELG CMP PTC HET 

MTM PTP MJX MTM LTP 
PTC ATL ABSUMINV CMP MNX 
MJX MTM PTC ATL MTM 
NEG NEG MNX ATC NEG 
ATL MNX ATC ABSUMINV OCCR 
WID ABSUMINV MTM WID PERIM 
HET ATC PERIM HET PTB 

ABSUMINV MJX ATL NEG PTC 
PERIM AVGABSC NEG PERIM PTP 
MNX PERIM WID MNX  

AVGABSC HET AVGABSC AVGABSC  
AVGC STDEVC HET AREA  

    

In order to find out how well these selected features worked in classifying tomato 

plants and weeds, discriminant analyses were conducted with canonical variable scores 

(CAN1 and CAN2) as variables for both good and bad data sets.  New canonical variable 

scores were created for both good and bad validation sets based on the result of the 

canonical discriminant analysis on the training sets. With these canonical variable scores, 

the SAS discriminant analysis procedure, DISCRIM was used to classify tomato plants 

and weeds.  The DISCRIM procedure developed a discriminant criterion to classify each 

observation into one of the groups using the training data set.  The derived discriminant 

criterion was then applied to the validation set.  This procedure evaluated the 



 163

performance of a discriminant criterion by estimating the error rates (probabilities of 

misclassification) in the classification of future observations.  In this test, to optimize 

classification, a proportional a priori probability was used for all classes.   

Table 4.9 shows the discriminant analysis for the good group and Table 4.10 

shows the result for the bad group.  With the newly created canonical variable scores 

from the selected 17 features in Table 4.8, the validation error rates for class 1, 2, and 4 

were 21.3%, 37.4% and 16.3%. For the bad group, the validation error rates for class 1, 2, 

and 4 were 17.1%, 31.5% and 42.0%.  The total error rates were 24.9% for the good 

group and 31.2% for the bad group. 

The overall classification error was calculated using the total number of plant 

leaves which were classified from classes 1 & 2 into class 4 and from class 4 into classes 

1 & 2.  If a cotyledon in class 1 was assigned to class 2 or a true leaf in class 2 was 

assigned to class 1, they were not considered as errors, since they were both tomato 

plants.  In the training set of the good group in Table 4.9, for example, 15 tomato 

cotyledons (class 1), 41 tomato true leaves (class 2), and 37 weeds (class 4) were 

incorrectly assigned to other classes.  Thus, the total error in this example was  

(15
403

 +  41 +  37)
 x 100 =  23.08 %.   

 



 164

Table 4.9  Discriminant analysis result with canonical variable scores calculated 
from the result of canonical discriminant analysis for good training 
and validation sets.  

 
Good training set: CAN1 and CAN2 
                        Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1             59              4             15             78 
                            75.64           5.13          19.23         100.00 
 
                 2             10             76             41            127 
                             7.87          59.84          32.28         100.00 
 
                 4             16             21            161            198 
                             8.08          10.61          81.31         100.00 
 
             Total             85            101            217            403 
           Percent          21.09          25.06          53.85         100.00 
 
            Priors         0.1935         0.3151         0.4913 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.2436           0.4016           0.1869       0.2308 
 

 

Good validation set: CAN1 and CAN2 
                       Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1            114              4             32            150 
                            76.00           2.67          21.33         100.00 
 
                 2              7            105             67            179 
                             3.91          58.66          37.43         100.00 
 
                 4              7             26            169            202 
                             3.47          12.87          83.66         100.00 
 
             Total            128            135            268            531 
           Percent          24.11          25.42          50.47         100.00 
 
            Priors         0.1935         0.3151         0.4913 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.2400           0.4134           0.1634       0.2486 
 



 165

Table 4.10  Discriminant analysis result with canonical variable scores calculated 
from the result of canonical discriminant analysis for bad training 
and validation sets.  

 

Bad training set: CAN1 and CAN2 
                     Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1             70              4             16             90 
                            77.78           4.44          17.78         100.00 
 
                 2             15             72             27            114 
                            13.16          63.16          23.68         100.00 
 
                 4             31             28             79            138 
                            22.46          20.29          57.25         100.00 
 
             Total            116            104            122            342 
           Percent          33.92          30.41          35.67         100.00 
 
            Priors         0.2632         0.3333         0.4035 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.2222           0.3684           0.4275       0.2982 
 

 

Bad validation set: CAN1 and CAN2     
                     Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1             96              6             21            123 
                            78.05           4.88          17.07         100.00 
 
                 2             12             64             35            111 
                            10.81          57.66          31.53         100.00 
 
                 4             35             31             91            157 
                            22.29          19.75          57.96         100.00 
 
             Total            143            101            147            391 
           Percent          36.57          25.83          37.60         100.00 
 
            Priors         0.2632         0.3333         0.4035 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.2195           0.4234           0.4204       0.3120 
 

 



 166

In principal component analysis (Table 4.11), the eigenvalues indicated that, for 

the good group,  the first five principal components provided a good summary of the 

good group, accounting for 88.6% of the standardized variance and similarly the first five 

principal components explained 88.0% of the variance for the bad group. 

 

Table 4.11  Principal component analysis for the good and bad training sets, showing that 
the first 5 principal components explained 88% of the standardized variance. 

 
Principal Component Analysis 

 
Good training set: Eigenvalues of the Correlation Matrix  

                 Eigenvalue      Difference      Proportion      Cumulative 
 
     PRIN1          14.4419         9.88619        0.534884        0.534884 
     PRIN2           4.5557         2.00638        0.168729        0.703613 
     PRIN3           2.5493         1.20150        0.094419        0.798032 
     PRIN4           1.3478         0.32973        0.049919        0.847950 
     PRIN5           1.0181         0.27111        0.037706        0.885657 
     PRIN6           0.7470         0.17854        0.027666        0.913322 
     PRIN7           0.5684         0.10136        0.021053        0.934375 
     PRIN8           0.4671         0.12971        0.017299        0.951674 
     PRIN9           0.3374         0.07415        0.012495        0.964169 
     PRIN10          0.2632         0.10799        0.009749        0.973918 
     PRIN11          0.1552         0.02474        0.005749        0.979667 
     PRIN12          0.1305         0.03862        0.004833        0.984499 
     PRIN13          0.0919         0.01352        0.003402        0.987901 
     PRIN14          0.0783         0.01197        0.002902        0.990803 
     PRIN15          0.0664          .             0.002458        0.993261 

 

 

Bad training: Eigenvalues of the Correlation Matrix  
 

                 Eigenvalue      Difference      Proportion      Cumulative 
 
     PRIN1          13.6573         8.77577        0.505826        0.505826 
     PRIN2           4.8815         2.14777        0.180797        0.686623 
     PRIN3           2.7337         1.23948        0.101250        0.787873 
     PRIN4           1.4943         0.49821        0.055343        0.843216 
     PRIN5           0.9961         0.29617        0.036891        0.880107 
     PRIN6           0.6999         0.10662        0.025922        0.906029 
     PRIN7           0.5933         0.12650        0.021973        0.928002 
     PRIN8           0.4668         0.06794        0.017288        0.945289 
     PRIN9           0.3988         0.15542        0.014772        0.960061 
     PRIN10          0.2434         0.02657        0.009015        0.969076 
     PRIN11          0.2168         0.05000        0.008031        0.977108 
     PRIN12          0.1668         0.06648        0.006179        0.983287 
     PRIN13          0.1004         0.01254        0.003717        0.987004 
     PRIN14          0.0878         0.01543        0.003253        0.990257 
     PRIN15          0.0724          .             0.002681        0.992937 

 

 



 167

It is a common practice to limit the number of  principal components used to those 

which explain about 70 - 80% of the standardized variance (Azari, 1998).   Thus, in order 

to choose more important features, the top 20 features from the first five components 

(PRIN1 - PRIN5) were preliminarily selected based on their eigenvalues.  The features 

selected are  listed in Table 4.12 for the good group in order of their magnitude of their 

eigenvalues.   

 

Table 4.12 Selected features from principal component analysis for good training set  
           based on their magnitude of eigenvalues. 

 
PRIN1 PRIN2 PRIN3 PRIN4 PRIN5 
PERIM ELG STDEVC ECCN ABSUMINV 

MJX MTM MINC AVGABSC M20 
AREA ETC CMP M02 WID 
NEG LTP ATC AVGC HET 
MNX PTP ATL ABSUMINV ECCN 
PTC AVGABSC ATP WID MINC 
HET PTB OCCR ATP STDEVC 

AVGC ATP PTB ATL AVGABSC 
WID MNX PTC NEG OCCR 
ATC OCCR AREA PTB PTB 
ATL CMP M02 HET LTP 
M02 MJX ELG ELG AREA 

CMP PTC MTM MTM M02
OCCR ATL AVGABSC MNX ATC 
M20 AVGC PTP STDEVC PTP 
PTB ECCN M20 OCCR CMP 
PTP MINC MNX M20 MTM 

MINC ABSUMINV HET PERIM NEG 
ATP HET ECCN AREA ELG 

AVGABSC ATC AVGC LTP ATL 
 

Then, the features which appeared at least three times in Table 4.12 were selected as the 

most important subset (listed in alphabetical order):   



 168

ABSUMINV, AREA, ATC, ATL, ATP, AVGABSC, AVGC, CMP, ECCN, ELG, 

HET, LTP, M02, M20, MINC, MNX, MTM, NEG, OCCR, PTB,  

PTC, PTP, STDEVC, and WID. 

 

A discriminant analysis was conducted with the first five principal components  

(PRIN1-PRIN5) added to the good validation data set based on principal component 

analysis using the good training data set, Table 4.13.  In this test, proportional a priori 

probability was also used to optimize classification.  The error rates were 6.0% for class 

1, 41% for class 2, and 23.8% for class 4.  Comparing the result with the one of the 

discriminant analysis with CAN1 and CAN2 for the good validation set (Table 4.9), the 

principal component scores showed superiority for classifying class 1 (92.7% vs. 76.0%) 

and the canonical variable scores showed less error for class 2 (37.4% vs. 41.3%) and 

class 4 (16.3% vs. 23.8%) than the principal component scores.      

 



 169

Table 4.13  Discriminant analysis result with the principal component scores  
obtained from the principal component analysis for the good 
group. 

 
 
Good training set: PRIN1 - PRIN5 
                     Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1             64              5              9             78 
                            82.05           6.41          11.54         100.00 
 
                 2             13             67             47            127 
                            10.24          52.76          37.01         100.00 
 
                 4             23             35            140            198 
                            11.62          17.68          70.71         100.00 
 
             Total            100            107            196            403 
           Percent          24.81          26.55          48.64         100.00 
 
            Priors         0.1935         0.3151         0.4913 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.1795           0.4724           0.2929       0.2829 
 
 
 
 
Good validation set: PRIN1 - PRIN5 
                     Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1            139              2              9            150 
                            92.67           1.33           6.00         100.00 
 
                 2             23             82             74            179 
                            12.85          45.81          41.34         100.00 
 
                 4             26             22            154            202 
                            12.87          10.89          76.24         100.00 
 
             Total            188            106            237            531 
           Percent          35.40          19.96          44.63         100.00 
 
            Priors         0.1935         0.3151         0.4913 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.0733           0.5419           0.2376       0.2467 
 

 



 170

Table 4.14 Selected features from principal component analysis for bad training 
set based on their magnitude of eigenvalues. 

 
PRIN1 PRIN2 PRIN3 PRIN4 PRIN5 
PERIM ETC STDEVC ECCN ABSUMINV 

MJX ELG CMP AVGABSC M20 
AREA MTM ATP M02 WID 
NEG LTP ATC AVGC M02
MNX PTP MINC M20 HET 
PTC PTB ATL ATL OCCR 
HET AVGABSC M02 ABSUMINV MINC 

AVGC ATP MTM STDEVC ECCN 
WID MNX AREA NEG ATP 
ATC MJX OCCR MNX STDEVC 
ATL OCCR ELG PTB ATL 
CMP PTC PTC WID MTM 

OCCR MINC PTB ELG AREA 
MINC ATL ECCN MTM NEG 
PTB STDEVC M20 ETC AVGC 
PTP ATC PTP ATP ELG 
M02 ECCN MNX PTP CMP 
M20 CMP AVGC PERIM LTP 

AVGABSC HET HET HET ATC 
ATP M02 NEG ATC PTP 

 

The same procedure was used for bad training set (Table 4.14) and the following features 

were selected: 

AREA, ATC, ATL, ATP, AVGABSC, AVGC, CMP, ECCN, ELG, HET,  

M02, M20, MINC, MNX, MTM, NEG, OCCR, PTB, PTC, PTP,  

STDEVC, and WID 

A discriminant analysis was also conducted with the principal component scores 

obtained with the bad group, Table 4.15.  The error rates were 2.4% for class 1, 21.6% for 

class 2 and 75.2% for class 4.  Comparing the result with the one from the discriminant 

analysis with the canonical variable scores, the principal component scores showed only 

2.4% error for class 1 whereas the canonical variable scores showed 17.1% error.  The 



 171

principal component scores also showed less error for class 2 (21.6% vs. 31.5%) than the 

canonical variable scores.  However, the canonical variable scores produced less error for 

class 4 than the principal component scores (42.0% vs. 75.2%) for the bad validation set. 

 



 172

 Table 4.15 Discriminant analysis result with the principal component scores  
obtained from the principal component analysis for the bad group. 

 
 
Bad training set: PRIN1 - PRIN5 
                     Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1             84              1              5             90 
                            93.33           1.11           5.56         100.00 
 
                 2             22             69             23            114 
                            19.30          60.53          20.18         100.00 
 
                 4             61             33             44            138 
                            44.20          23.91          31.88         100.00 
 
             Total            167            103             72            342 
           Percent          48.83          30.12          21.05         100.00 
 
            Priors         0.2632         0.3333         0.4035 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.0667           0.3947           0.6812       0.3567 
 
 
 
Bad validation set: PRIN1 - PRIN5 
                     Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1            115              5              3            123 
                            93.50           4.07           2.44         100.00 
 
                 2             22             65             24            111 
                            19.82          58.56          21.62         100.00 
 
                 4             81             37             39            157 
                            51.59          23.57          24.84         100.00 
 
             Total            218            107             66            391 
           Percent          55.75          27.37          16.88         100.00 
 
            Priors         0.2632         0.3333         0.4035 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.0650           0.4144           0.7516       0.3018  
 
 
 

 

 



 173

Therefore, from the canonical discriminant analysis (Tables 4.8) and the principal 

component analyses (Table 4.12 and 4.14), the following 13 features were selected 

because they were listed in both the canonical discriminant analysis and the principal 

component analysis feature subsets.   

⇒ Final best subset of features for Method I: 

AVGABSC, ATL, ATP, PTB, CMP, ELG, HET, MNX, MTM, NEG,  

OCCR, PTC, and PTP. 

 

With these 13 input features, a discriminant analysis was conducted to classify 

tomato plants and weeds.  In this analysis, a serial-two-step Bayes classifier was used in 

order to get higher performance for class 2.  Suppose Classifier14 is the Bayes classifier 

trained on the training data set containing only classes 1 and 4.  The basic idea of this two 

step Bayes classifier was to first classify all objects as either class 1 or class 4 using the 

Classifier14.  Then, the class 4 objects were re-classified as either class 2 or class 4 using 

a second Bayes classifier trained on the training data set containing the correctly 

classified class 4 objects using the Classifier14 and the class 2 objects classified as class 

4 using the Classifier14 in the training data set.   

The results are shown in Table 4.16 for the good group and in Table 4.17 for the 

bad group.  As illustrated in Table 4.16, the classifier with 13 features worked better in 

identifying class 1 (tomato cotyledon) than in identifying the other two classes (class 2 

and 4) for both good and bad validation sets.  The classification rates were over 92% for 

tomato cotyledons (class 1) for both groups,  and a little over  40% for tomato true leaves  

for both groups.  The identification rate for the weed class was 77.7% for the good group 



 174

and 45.2% for the bad group.  This indicated that the weed class in bad group was not 

easy to identify.  The overall error was 25.0% for the good group and 35.6% for the bad 

group.  



 175

Table 4.16  Result of discriminant analysis with the selected features from Method I 
for the good group. 
 

 
Good group, Training set: 
 

Number of Observations and Percent Classified into CLASS: 
 

        From CLASS              1              2              4          Total 
 
                 1             71              0              7             78 
                            91.03           0.00           8.97         100.00 
 
                 2             22             61             44            127 
                            17.32          48.03          34.65         100.00 
 
                 4             29             16            153            198 
                            15.15           8.08          77.27         100.00 
 
             Total            122             77            204            403 
           Percent          30.27          19.11          50.62         100.00 
 
            Priors         0.1000         0.1000         0.8000 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.0897           0.5197           0.2273       0.2382 
 
 
Good group, Validation set: 
 

Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1            147              0              3            150 
                            98.00           0.00           2.00         100.00 
 
                 2             24             70             85            179 
                            13.41          39.11          47.49         100.00 
 
                 4             26             20            156            202 
                            12.87           9.90          77.23         100.00 
 
             Total            197             90            244            531 
           Percent          37.10          16.95          45.95         100.00 
 
            Priors         0.1000         0.1000         0.8000 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.0200           0.6089           0.2277       0.2524 



 176

Table 4.17  Result of discriminant analysis with the selected features from Method I 
for the bad group. 
 

 
Bad group, Training set: 
 

Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1             83              0              7             90 
                            92.22           0.00           7.78         100.00 
 
                 2             19             68             27            114 
                            16.67          59.65          23.68         100.00 
 
                 4             43             22             73            138 
                            31.16          15.94          52.90         100.00 
 
             Total            145             90            107            342 
           Percent          42.40          26.32          31.29         100.00 
 
            Priors         0.1000         0.1000         0.8000 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.0778           0.4035           0.4710       0.2895 
 
 
 
Bad group, Validation set: 
 

Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1            114              0              9            123 
                            92.68           0.00           7.32         100.00 
 
                 2             15             52             44            111 
                            13.51          46.85          39.64         100.00 
 
                 4             64             22             71            157 
                            40.76          14.01          45.22         100.00 
 
             Total            193             74            124            391 
           Percent          49.36          18.93          31.71         100.00 
 
            Priors         0.1000         0.1000         0.8000 
 
 
                Error Count Estimates for CLASS: 
  
                            1                2                4        Total 
 
      Rate             0.0732           0.5315           0.5478       0.3555 



 177

Method II 
 

The second method was to try to reduce the number of features to the most 

important subset for real-time use by correlation analysis and linear regression model 

selection based on the R2 criteria.  In this method, the number of features were limited to 

4 for real-time implementation.  The multi-colinearity among features was solved using 

correlation analysis. 

The average feature execution times for 10 tomato cotyledons are listed in Table 

4.18.  Most of the curvature related features took less time to calculate than other 

non-curvature related features, however the longer the  perimeter (i.e., bigger object), the 

longer the curvature would take to calculate.  LTP was the most time-consuming feature.  

The basic idea was first to find the minimum feature subset that gives good 

classification of tomato cotyledons vs. weeds in the good image set, then to find 

additional features for tomato true leaves vs. weeds so that the overall classification could 

be improved. 



 178

Table 4.18 Average time to calculate each feature for an image with 10 tomato 
cotyledons. 

 
Feature Time (ms) 

ABSUMINV 2.32 
AVGABSC 2.32 

AVGC 2.32 
MAXC 2.32 
NEG 2.32 

MINC 2.32 
STDEVC 2.32 
SUMINV 2.32 
MTMC 2.37 
AREA 3.22 

YCNTRD 3.30 
ATC 5.59 

HET & WID 6.49 
LHW 6.53 

PERIM 7.65 
M20 7.70 
M02 7.70 
M11 8.19 

ATP 9.76 
PTC 10.02 
CMP 10.92 
MNX 12.76 
CTC 13.29 
PTB 14.19 
PTP 14.20 
MJX 14.56 
ELG 14.91 
MTM 14.91 

PRINAXIS 15.95 
ETC 17.28 
ATL 17.83 

OCCR 18.13 
ECCN 19.16 
LTP 22.26 

  



 179

The results from the linear regression analysis conducted with the features as 

independent variables and class numbers (1 = tomato cotyledons and 0 = weeds) as 

dependent variables are given in Table 4.19.  This table shows only partial results (the 5 

best combinations at each number of independent variables) since there were too many  

feature combinations with the same R2 value to list.   

 

Table 4.19  Selected features for classes 1 and 4 by R2 criteria from linear regression  
 using both good and bad training sets. 

 
R2 Good training set Time 

(ms) 
R2 Bad training set Time 

(ms) 
0.49 MNX, LTP, PTC, ETC 62.32 0.29 ELG, CMP, AVGC, PTC 12.34 
0.49 CMP, PTB, LTP, OCCR 65.50 0.29 ELG, CMP, MINC, PTC 38.17 
0.48 PTB, LTP, WID, M20 50.64 0.29 ELG, CMP, MINC, ECCN 47.31 
0.48 CMP, LTP, WID, OCCR 57.80 0.29 ELG, CMP, STDEVC, ECCN 47.31 
0.48 ELG, PTB, LTP, WID 57.85 0.29 MNX, ELG, CMP, PTC 48.61 
0.47 AVGC, PTB, LTP 38.77 0.28 ELG, CMP, STDEVC 28.15 
0.47 ELG, AVGC, LTP 39.49 0.28 STDEVC, LTP, OCCR 42.71 
0.47 PTB, LTP, WID 42.95 0.28 ELG, CMP, ECCN 44.99 
0.47 ELG, LTP, WID 43.66 0.27 MINC, LTP, PTC 34.65 
0.47 CMP, LTP, OCCR 51.31 0.27 ELG, CMP, PTC 35.85 
0.46 CMP, LTP 33.18 0.26 ELG, CMP 25.83 
0.46 ELG, LTP 37.17 0.26 LTP, PTC 32.28 
0.45 ELG 14.91 0.26 LTP, ETC 39.54 
0.45 ELG, NEG 17.23 0.26 LTP, OCCR 40.39 
0.45 ELG, HET 21.40 0.26 LTP, ECCN 41.42 
0.45 ELG, ATP 24.64 0.24 LTP 22.86 
0.37 LTP 22.26 0.16 MNX 12.76 
0.35 ETC 17.28 0.15 ELG 14.91 
0.09 MNX 12.76 0.15 OCCR 18.13 
0.08 OCCR 18.13 0.10 PTB 14.19 
 

With these combinations of features, discriminant analyses were conducted and 

the following set of features in Table 4.20 produced good discriminatory power with over 



 180

90% recognition of tomato cotyledons and over 80% classification of weeds in the good 

validation set. 

 The same procedure was done with class 2 (tomato true leaves) vs. class 4 

(weeds). Table 4.21 shows the result of linear regression by R2 criteria and Table 4.22 

shows the feature combinations in the good group which had recognition rates greater 

than 60% for tomato true leaves and weeds.   

 
Table 4.20  Feature subsets with classification rates over 90% for tomato cotyledons  

and over 80% for weeds at the same time in the good validation set. 
 

Feature Time (ms) Feature Time (ms) 
ELG 14.91 ELG, LTP, WID 43.66 
ELG, ABSUMINV 17.23 CMP, LTP, OCCR  51.31 
ELG, AVGABSC 17.23 ELG, PTB, LTP 51.36 
ELG, AVGC 17.23 MNX, ELG, HET, ETC 51.44 
ELG, MINC 17.28 CMP, MINC, LTP, OCCR 53.63 
ELG, HET 21.40 CMP, AVGC, LTP, OCCR 53.63 
ELG, WID 21.40 CMP, AVGABSC, LTP, OCCR 53.63 
LTP 22.86 ELG, AVGC, PTB, LTP 53.68 
ELG, NEG, WID 23.72 PTB, LTP, ETC 53.73 
ELG, ATP 24.64 LTP, WID, PTC, ETC 56.05 
ELG, PTC 24.93 AVGC, PTB, LTP, OCCR 56.90 
ELG, CMP 25.83 CMP, LTP, WID, OCCR 57.80 
ELG, PTB 29.10 ELG, PTB, LTP, WID 57.86 
ELG, OCCR 33.01 PTB, LTP, WID, ETC 60.22 
CMP, LTP 33.18 PTB, LTP, HET, ETC 60.22 
ELG, NEG, WID, ATP 33.48 CMP, LTP, ATP, OCCR 61.07 
ELG, ECCN 34.07 PTB, LTP, WID, OCCR  61.07 
ELG, LTP 37.17 MNX, LTP, PTC, ETC 62.32 
ELG, HET, ETC 38.68 MNX, CMP, LTP, OCCR 64.07 
AVGC, PTB, LTP 38.77 CMP, PTB, LTP, OCCR 65.50 
ELG, AVGC, LTP 39.49 ELG, CMP, LTP, OCCR 66.22 
PTB, LTP, WID  42.94 CMP, LTP, OCCR, ETC 68.59 

 

 

 



Table 4.21  Selected features for classes 2 and 4 by R2 criteria from linear regression 
using both good and bad training sets. 

 
R2 Good training set Time (ms) R2 Bad training set Time (ms) 

0.34 NEG, M02, PTC, ETC 37.32 0.19 AREA, MINC, AVGABSC, M20 15.56 
0.33 AVGABSC, NEG, M02, ETC 29.62 0.19 AREA, AVGABSC, WID, M20 19.13 
0.33 NEG, M02, OCCR, ETC 45.43 0.19 AREA, AVGC, WID, M20 19.73 
0.33 ELG, M02, OCCR, PTC 50.76 0.19 AREA, AVGABSC, M20, M02 20.94 
0.33  M02, OCCR, PTC, ETC 53.13 0.19 AREA, AVGABSC, M20, ATP 23.00 
0.32 OCCR, ETC 35.41 0.18 AREA, AVGABSC, M20 13.24 
0.32 AVGC, OCCR, ETC 37.73 0.18 AREA, AVGC, M20 13.24 
0.32 AVGABSC, OCCR, ETC 37.73 0.18 AREA, WID, M20 17.41 
0.32 M02, OCCR, ETC 43.11 0.17 AREA, AVGABSC, ECCN 24.70 
0.32 PTB, OCCR, ETC 49.60 0.17 AVGABSC, WID, M20 16.51 
0.32 LTP, OCCR, ETC 57.67 0.16 MINC, AVGABSC 4.64 
0.30 AVGC, ETC 19.60 0.16 AVGC, STDEVC 4.64 
0.29 NEG, ETC 19.60 0.16 AVGC, AVGABSC 4.64 
0.29 CMP, ETC 28.20 0.16 AREA, AVGABSC 5.54 
0.29 PTB, ETC 31.47 0.16 MNX, AVGABSC 15.08 
0.22   PTC 10.02 0.15 AVGC 2.32 
0.22      ETC 17.28 0.13 AVGABSC 2.32
0.21    AVGC 2.32 0.11 AREA 3.22
0.20     AVGABSC 2.32 0.11 WID 6.49
0.19     CMP 10.92 0.10 HET 6.49

 

 181 



 182

Table 4.22  Feature subsets with classification rates over 60% for tomato true leaves and 
over 60% for weeds simultaneously for the good validation set. 

 
Feature Time 

(ms) 
Feature Time (ms) 

AVGABSC, NEG 4.64 ABSUMINV, OCCR, ETC 37.73 
CMP 10.92 AREA, OCCR, ETC 38.63 
ELG, AVGC 17.23 LTP, ETC 39.54 
AVGC, ETC 19.60 MNX, NEG, M02, ETC 40.06 
NEG, ETC 19.60 OCCR, ATC, ETC 41.00 
MINC, ETC 19.60 WID, OCCR, ETC 41.90 
STDEVC, ETC 19.60 HET, OCCR, ETC 41.90 
CMP, PTC 20.94 ELG, NEG, M02, ETC 42.21 
WID, ETC 23.77 M02, OCCR, ETC 43.11 
ATP, ETC 27.04 M20, OCCR, ETC 43.11 
NEG, M02, ETC 27.30 ATP, OCCR, ETC 45.17 
MNX, ELG 27.67 NEG, M02, OCCR, ETC 45.43 
CMP, ETC 28.20 OCCR, PTC, ETC 45.43 
AVGABSC, NEG, M02, ETC 29.62 AREA, M02, OCCR, ETC 46.33 
AVGC, NEG, M02 , ETC 29.62 CMP, OCCR, ETC 46.33 
MNX, ETC 30.04 MNX, OCCR, ETC 48.17 
PTB, ETC 31.47 WID, M20 , OCCR, ETC 49.60 
NEG, HET, M02, ETC 33.79 HET, M02, OCCR, ETC 49.60 
ELG, NEG, M02, PTC 34.95 PTB, OCCR, ETC 49.61 
OCCR, ETC 35.41 M02, OCCR, ATC, ETC 48.70 
MINC, OCCR, ETC 37.73 ELG, OCCR, ETC 50.32 
STDEVC, OCCR, ETC 37.73 ELG, M02, OCCR, PTC 50.76 
AVGC, OCCR, ETC 37.73 M02, OCCR, PTC, ETC 53.13 
AVGABSC, OCCR, ETC 37.73 PTB, M02, OCCR, ETC 57.30 
NEG, OCCR, ETC 37.73 LTP, OCCR, ETC 57.67 

 
 

Therefore, the feature combinations which were common in both Table 4.20 and Table 

4.22 were selected for further discriminant analysis.  These feature subsets are listed in 

Table 4.23 and the bold faced features are the common features . 



 183

Table 4.23  Common feature subsets from both linear regression results of classes 
1 & 4 (Table 4.19) and classes 2 & 4 (Table 4.21) (bold faced features are 
common features in both Table 4.19 and Table 4.21).  

 
1 common feature 2 common features  2 common features  

ELG OCCR, ETC ETC, OCCR, ABSUMINV 
ELG, MNX ETC, MNX ETC, OCCR, STDEVC 
ELG, M02, OCCR, PTC ELG, AVGC ETC, OCCR, AVGC 
ELG, NEG, M02, ETC ELG, OCCR ETC, OCCR, AVGABSC 
ELG, NEG, M02, PTC ELG, ETC, HET ETC, OCCR, M02
ELG, PTB, LTP ETC, HET, PTB, LTP ETC, OCCR, WID 
LTP ELG, NEG, WID ETC, OCCR, PTC 
LTP, ETC ELG, NEG, WID, ATP ETC, OCCR, ELG 
LTP, ETC, OCCR MNX, CMP, LTP, OCCR ETC, OCCR, MNX 
CMP ETC, PTB ETC, OCCR, MINC 
CMP, LTP ETC, PTB, LTP ETC, OCCR, M20 
CMP, ETC CMP, LTP, ATP, OCCR ETC, OCCR, CMP 
CMP, PTC LTP, WID, PTC, ETC ETC, OCCR, HET 
CMP, PTB, LTP, OCCR CMP, OCCR, LTP AVGC, PTB, LTP, OCCR 
CMP, AVGC, LTP, OCCR ETC, PTC, MNX, LTP CMP, MINC, LTP, OCCR 
ELG, CMP, LTP, OCCR ETC, MNX, NEG, M02  

 ETC, MNX, ELG, HET  
3 common features  ETC, OCCR, NEG  

CMP, OCCR, ETC ETC, OCCR, AREA  
CMP, OCCR, ETC, LTP ETC, OCCR, ATC  
CMP, WID, OCCR ETC, OCCR, ATP  
CMP, LTP, WID, OCCR CMP, AVGABSC, LTP, 

OCCR 
 

  

 

With the selected feature combinations in Table 4.23, discriminant analyses were 

conducted using the SAS  DISCRIM procedure with three classes (tomato cotyledon, 

tomato true leaf, and weed) for both good and bad groups. The a priori probabilities used 

were 0.1 for class 1, 0.1 for class 2, and 0.8 for class 4. The following list of feature 

combinations in Table 4.24 showed classification rates of over 70% for class 1 and over 

80% for class 4 simultaneously.  

 



 184

Table 4.24 Selected feature sets which produced over 70% recognition for class 1   
and over 80% for class 4 simultaneously in the good group from 
discriminant analysis. 

 
Selected features from discriminant 

analysis 
Calculation 
Time (ms) 

Total error rate 
(%) 

 Good        Bad
ELG, NEG, M02, PTC 34.95 30.32 46.04 

ELG, M02, OCCR, PTC 50.76 33.90 40.92 
ETC, MNX, NEG, M02 52.52 29.19 45.27 
ELG, NEG, M02, ETC 54.67 29.94 42.71 

MNX, CMP, LTP, OCCR 64.07 33.52 40.92 
ELG, CMP, LTP, OCCR 66.22 30.32 37.60 
ETC, PTC, MNX, LTP 72.98 28.25 41.18 

 
 

Based on the discriminant analysis results, the feature subsets: [ELG, NEG, M02, 

ETC], [ELG, NEG, M02, PTC], [ELG, NEG, M02, PTC], [ETC, PTC, MNX, LTP], and 

[ETC, MNX, NEG, M02] showed poor classification for class 4 (weeds) in bad group,  

ranging from 50% to 66%. Between the two remaining feature subsets, [ELG, CMP, LTP, 

OCCR] and [MNX, CMP, LTP, OCCR], the feature subset [MNX, CMP, LTP, OCCR] 

showed better classification ( 4% more for the good group and 1% more for the bad 

group) for class 4 (weeds) in both good and bad groups than [ELG, CMP, LTP, OCCR].  

Therefore, the following feature subset was chosen as the best subset from the Method II.  

The average calculation time (10 cotyledons) for this feature set was 64.07 ms. 

 

⇒ Best subset from Method II: MNX, CMP, LTP,  and OCCR. 

 

The result of discriminant analysis with this feature subset is shown in Table 4.25 

for the good group and Table 4.26 for the bad group.  In this analysis, a serial-two-step 

Bayes classifier was also used in order to get higher performance for class 2.  



 185

For the good group, the error rates for classes 1, 2, and 4 were 12.67%, 61.45%, 

and 5.45%.  For true leaves, the error rate was only when they were classified as weeds 

since classes 1 and 2 were both tomato plants.  For the bad group, the error rates for 

classes 1, 2, and 4 were 12.20%, 91.00%, and 28.03%.  The error rate for tomato true 

leaves in the bad group was extremely high, which resulted from their shape being very 

similar to weeds.  The total error rates were 26.37% for the good group and 40.92% for 

the bad group.     

 
 



 186

Table 4.25  Discriminant analysis result with the best subset [MNX, CMP, LTP, OCCR] 
from the method II for the good group. 

 
 
Good training set: MNX, CMP, LTP, OCCR 

Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1             57              0             21             78 
                            73.08           0.00          26.92         100.00 
 
                 2             16             36             75            127 
                            12.60          28.35          59.06         100.00 
 
                 4             16              8            174            198 
                             8.08           4.04          87.88         100.00 
 
             Total             89             44            270            403 
           Percent          22.08          10.92          67.00         100.00 
 
            Priors         0.1000         0.1000         0.8000 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.2692           0.7165           0.1212       0.2978 
 
 
 
 
 
Good Validation set: MNX, CMP, LTP, OCCR 

Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1            131              0             19            150 
                            87.33           0.00          12.67         100.00 
 
                 2             22             47            110            179 
                            12.29          26.26          61.45         100.00 
 
                 4              7              4            191            202 
                             3.47           1.98          94.55         100.00 
 
             Total            160             51            320            531 
           Percent          30.13           9.60          60.26         100.00 
 
            Priors         0.1000         0.1000         0.8000 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.1267           0.7374           0.0545       0.2637 
 
 
 
 
 
 



 187

Table 4.26  Discriminant analysis result with the best subset [MNX, CMP, LTP, OCCR] 
from the method II for the bad group. 

 
 
Bad training set: MNX, CMP, LTP, OCCR 

Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1             73              0             17             90 
                            81.11           0.00          18.89         100.00 
 
                 2             16              4             94            114 
                            14.04           3.51          82.46         100.00 
 
                 4             37              0            101            138 
                            26.81           0.00          73.19         100.00 
 
             Total            126              4            212            342 
           Percent          36.84           1.17          61.99         100.00 
 
            Priors         0.1000         0.1000         0.8000 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.1889           0.9649           0.3801       0.4327 
 
 
 
 
 
Bad Validation set: MNX, CMP, LTP, OCCR 

Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1            108              0             15            123 
                            87.80           0.00          12.20         100.00 
 
                 2             10              1            101            111 
                             9.01           0.90          91.00         100.00 
 
                 4             44              0            113            157 
                            28.03           0.00          71.97         100.00 
 
             Total            162              1            229            391 
           Percent          41.43           0.26          58.57         100.00 
 
            Priors         0.1000         0.1000         0.8000 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.1220           0.9974           0.2803       0.4092 
 
 



 188

Method III

 This method was used to find the best feature subsets for real-time field use by 

trial and error.  Due to time constraints, it was not possible to try all possible 

combinations of 27 features. Thus, the features in Table 4.27 were selected to conduct 

further discriminant analysis based on the results from principal component analysis, 

canonical discriminant analysis and the stepwise discriminant analysis.  

 

Table 4.27  Feature subsets used in discriminant analysis in Method III. 

Features used Calculation time (ms) 
ELG, CMP, ATP 35.59 
MNX, M02, ETC 37.74 

ELG, PTC, OCCR 43.06 
AREA, LTP, OCCR 43.61 

MNX, M02, ETC, PTC 47.76 
MNX, LTP, OCCR 53.15 
ELG, LTP, OCCR 55.30 

MNX, LTP, OCCR, AVGABSC 55.47 
AREA, LTP, OCCR, PTB 57.80 

LTP, ETC, MNX, ATC 57.89 
ELG, PTC, OCCR, ETC 60.34 
CMP, LTP, OCCR, ETC 68.59 
ELG, LTP, OCCR, ETC 72.58 

  

Based on discriminant analysis results with the above feature sets, the following 

sets were selected since they produced classification rates of over 80% for class 1 and 

over 90% for class 4 for the good group.   

 [AREA, LTP, OCCR], [AREA, LTP, OCCR, PTB], [MNX, LTP, OCCR], 

[MNX, LTP, OCCR, AVGABSC], and [LTP, ETC, MNX, ATC] 

The set [MNX, LTP, OCCR] produced poor classification rate (54%) of class 1 in the bad 

group and the set [LTP, ETC, MNX, ATC] had a 67% classification rate of class 4 in the 



 189

bad group.  Thus these two sets were eliminated.  The remaining three subsets [AREA, 

LTP, OCCR], [AREA, LTP, OCCR, PTB] and [MNX, LTP, OCCR] produced very low 

classification rates for true leaves, ranging from 9% to 17% for the good group and from 

1% to 6% for the bad group.  However, among the remaining three subsets, the set 

[AREA, LTP, OCCR] had the highest classification rates for class 4 in both good and bad 

groups while maintaining the same level of classification rates for class 1 in both groups.  

Therefore, this set was chosen as the best set in the method III.  The discriminant result 

with this best feature subset is given in Table 4.28.  In this analysis, a serial-two-step 

Bayes classifier was also used.  The calculation time for this subset was 43.61 ms. 

  

⇒ Best subset from Method III: AREA, LTP, and OCCR 

 

 For the good group, the error rates for classes 1, 2, and 4 were 24.0%, 77.7%, and 

5.0%.  For the bad group, the error rates were 48.0%, 94.6%, and 8.9% for classes 1, 2, 

and 4 respectively.  This feature subset also showed difficulty in correctly classifying 

class 2 in the bad group.  The total error rates were 34.8% for the good group and 45.5% 

for the bad group.   



 190

Table 4.28 Classification result with the best feature subset from the method III  
for good training and validation sets. 

 
 
Good training set: AREA, LTP, OCCR 
 

Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1             55              0             23             78 
                            70.51           0.00          29.49         100.00 
 
                 2              8             25             94            127 
                             6.30          19.69          74.02         100.00 
 
                 4             10              2            186            198 
                             5.05           1.01          93.94         100.00 
 
             Total             73             27            303            403 
           Percent          18.11           6.70          75.19         100.00 
 
            Priors         0.1000         0.1000         0.8000 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.2949           0.8031           0.0606       0.3201 
 
 
 
 
 
 
Good validation set: AREA, LTP, OCCR 
 

Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1            114              0             36            150 
                            76.00           0.00          24.00         100.00 
 
                 2             12             28            139            179 
                             6.70          15.64          77.65         100.00 
 
                 4              9              1            192            202 
                             4.46           0.50          95.05         100.00 
 
             Total            135             29            367            531 
           Percent          25.42           5.46          69.11         100.00 
 
            Priors         0.1000         0.1000         0.8000 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
 
 
    Rate             0.2400           0.8436           0.0495       0.3484 



 191

Table 4.29 Classification result with the best feature subset from the method III  
for bad training and validation sets. 

 
 
Bad training set: AREA, LTP, OCCR 
 

Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1             40              0             50             90 
                            44.44           0.00          55.56         100.00 
 
                 2              7              6            101            114 
                             6.14           5.26          88.60         100.00 
 
                 4             15              2            121            138 
                            10.87           1.45          87.68         100.00 
 
             Total             62              8            272            342 
           Percent          18.13           2.24          79.53         100.00 
 
            Priors         0.1000         0.1000         0.8000 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.5556           0.9474           0.1232       0.4912 
 
 
 
 
Bad validation set: AREA, LTP, OCCR 
 

Number of Observations and Percent Classified into CLASS: 
 
        From CLASS              1              2              4          Total 
 
                 1             64              0             59            123 
                            52.03           0.00          47.97         100.00 
 
                 2              3              3            105            111 
                             2.70           2.70          94.59         100.00 
 
                 4             13              1            143            157 
                             8.28           0.64          91.08         100.00 
 
             Total             80              4            307            391 
           Percent          20.46           1.02          78.52         100.00 
 
            Priors         0.1000         0.1000         0.8000 
 
 
                Error Count Estimates for CLASS: 
  
                           1                2                4        Total 
 
     Rate             0.4797           0.9730           0.0892       0.4552 



 192

Final selection of the best feature subsets 
 

Finally, the results from Method I, II, and III were summarized as classification 

error rates in Table 4.30 in order to select the overall best subset among the 27 features.  

Comparing the results from the three methods, the feature subset from method I showed 

superiority in classifying class 1 and class 2, however showed very poor results for class 

4 in the bad group.   

 

Table 4.30  Classification error rate (%) for each class and total error rate (ET, %)  
from the discriminant analysis results from the methods I, II, and III.  
(where Ci is i-th class.)  

 
   Good validation set Bad validation set 

Method Selected 
features 

Time 
(ms) 

C1 
(%)

C2 
(%)

C4 
(%)

ET 
(%) 

C1 
(%) 

C2 
(%) 

C4 
(%)

ET 
(%) 

  
 
I 

AVGABSC, 
ATL, ATP, 
PTB, CMP, 
ELG, HET, 

MNX, 
MTM, 
NEG, 

OCCR, 
PTC, PTP 

 
 
 

148.76 

 
 
 

2.0 

 
 
 

47.5

 
 
 

22.8

 
 
 

25.2

 
 
 

7.3 

 
 
 

39.6 

 
 
 

54.8

 
 
 

35.6 

II MNX, 
CMP, LTP,  

OCCR 

 
64.07 

 
12.7

 
61.5

 
5.5 

 
26.4

 
12.2 

 
91.0 

 
28.0

 
40.9 

III AREA, 
LTP, OCCR 

43.61 24.0 77.7 4.9 34.8 48.0 94.6 8.9 45.5 

 
 
 

The feature subset from method III showed lower error rates for class 4 in both 

good and bad groups than those from the method II, and higher error rates for classes 1 

and 2.  Since additional weed control needs to be done if the prototype system does not 

kill all the weeds, weed recognition is more important than tomato plant recognition.  



 193

Also tomato growers usually plant more tomato seeds to ensure a good stand and thin the 

stand after first cultivation.  In terms of calculation time for feature subsets, the subset 

from method III took the least time (43.61 ms) among three subsets.   Therefore, the 

subset of [AREA, LTP, OCCR] was selected as the overall best subset for identifying 

tomato plants and weeds: 

⇒ Final best subset from Method I, II, and III:  

AREA, LTP,  and OCCR 

 

With this final best subset, a discriminant analysis was conducted with 4 classes 

(classes 1, 2, 3, and 4) by introducing the third group (class 3) after feature selection to 

show the classification results for all classes.  In this analysis, the classifier was trained 

with the classes 1, 2, and 4 in the good training data set and was validated with all 4 

classes since the classifier was designed to classify classes 1, 2, and 4.  Instead of using a 

separate classifier for the good and bad image quality groups, a classifier trained on the 

good training data set was used for both the good and the bad validation data sets since 

the robot could not know to which group the image belongs in order to use the good vs. 

the bad group classifier.  The same a priori probabilities were used: class 1 = 0.1, class 2 

= 0.1 and class 4 = 0.8.  The results are given in Table 4.31 for the good group and Table 

4.32 for the bad group.   

For the good group, 80.7% of class 1 (tomato cotyledons) and 95.5% of class 4 

(weeds) were correctly classified, however the recognition rates for class 2 (21.2% of 

tomato true leaves were correctly classified as tomato plants) and class 3 (12.9% of the 

third class were correctly classified as tomato plants) were very low, indicating that the 



 194

recognition of those classes would be very difficult.  In terms of classification error rate, 

class 2 had 78.8% and class 3 had 87.2%.   



 195

Table 4.31  Classification result for 4 classes in good group using the best three features 
(AREA, LTP, and OCCR). 

 
Good group, training set: AREA, LTP, OCCR 
 
                    Number of Observations and Percent Classified into CLASS: 
 
       From CLASS            1            2            4        Total 
 
                1           55            3           20           78 
                         70.51         3.85        25.64       100.00 
 
                2            8           24           95          127 
                          6.30        18.90        74.80       100.00 
 
                4           12            3          183          198 
                          6.06         1.52        92.42       100.00 
 
            Total           75           30          298          403 
          Percent        18.61         7.44        73.95       100.00 
 
           Priors       0.1000       0.1000       0.8000 
 
 
                     Error Count Estimates for CLASS: 
  
                             1            2            4        Total 
 
 
         Rate          0.2949       0.8110       0.0758       0.3226 

 
Good group, validation set: AREA, LTP, OCCR 
 
Number of Observations and Percent Classified into CLASS: 
 
       From CLASS            1            2            4        Total 
 
                1          121            0           29          150 
                         80.67         0.00        19.33       100.00 
 
                2           14           24          141          179 
                          7.82        13.41        78.77       100.00 
 
                3           45           37          556          638 
                          7.05         5.80        87.15       100.00 
 
                4            9            0          193          202 
                          4.46         0.00        95.54       100.00 
 
            Total          189           61          919         1169 
          Percent        16.17         5.22        78.61       100.00 
 
           Priors       0.1000       0.1000       0.8000 
 
 
            Error Count Estimates for CLASS: 
  
                        1        2         3         4      Total 
       Rate        0.1933   0.8659         .    0.0446     0.6287 
 



 196

Table 4.32  Classification result for 4 classes in bad group using the best three features 
(AREA, LTP, and OCCR). 

 
 
Bad group, validation set: AREA, LTP, OCCR 
 
                       Number of Observations and Percent Classified into CLASS: 
 
       From CLASS            1            2            4        Total 
 
                1           72            0           51          123 
                         58.54         0.00        41.46       100.00 
 
                2            2            8          101          111 
                          1.80         7.21        90.99       100.00 
 
                3           34           25          604          663 
                          5.13         3.77        91.10       100.00 
 
                4           10            1          146          157 
                          6.37         0.64        92.99       100.00 
 
            Total          118           34          902         1054 
          Percent        11.20         3.23        85.58       100.00 
 
           Priors       0.1000       0.1000       0.8000 
 
 
            Error Count Estimates for CLASS: 
  
                    1          2          3          4        Total 
 
       Rate     0.4146     0.9279         .      0.0701      0.7277 
 

 

For bad group, the result showed similar trend with reasonably high classification 

rates for the classes 1 (58.5%) and 4 (92.9%) and extremely low rates for classes 2 and 3.  

The classification error rates were 90.9% for class 2 and 91.1% for class 3.  These high 

error rates for classes 2 and 4 came mainly from their shape being very similar to weeds.  

Sometimes true leaves didn’t have distinct notches on their boundaries, and showed the 

similar convex shape of weeds.  Even when true leaves had clear notches, their shape was 

frequently similar to the one of overlapped weeds or to concave weeds.  Most of the third 

group was composed of curled, laid down, or upright tomato leaves, thus they couldn’t 

satisfy the feature criteria of tomato leaves.  However, although the classification rates for 

true leaves and the third group were very low in both groups, the result was still useful 



 197

since most of the weeds were correctly recognized for cultivation and tomatoes were 

usually over planted.  The optimum window in time when the current technology could 

be used would be very early cultivation before the cotyledons fall off or become hidden 

by true leaves.  However, further studies are required for true leaves and the third group 

to enhance the classification rate since in both good and bad groups the recognition rate 

for both classes were very low. 

With these selected features, the image processing algorithm took 0.341 s to 

distinguish 10 tomato cotyledons in the image for one frame of a 256 x 240 pixel image 

representing a 11.43 cm x 10.16 cm field of view, Table 4.33.  Thus, the prototype could 

travel at a continuous rate of 1.21 km/h. 

 

Table 4.33 Execution time for each image processing step. 

Image processing step Execution 
time (ms)  

Percent of 
Total time 

Prepare image acquisition 0.02 0.01 
Acquire color image (one field) 16.76 4.87 
Transfer and subsample acquired image 27.21 7.91 
Check synchronization of image processing  
computer and spray controller 

2.08 0.60 

Check image buffer overflow 1.19 0.35 
Binarize 2.92 0.85 
Morphology analysis 32.04 9.31 
Label objects 9.89 2.87 
Extract features 141.28 42.00 
Make decision with a Bayesian classifier  0.94 0.27 
Find tomato & weed locations 58.10 16.88 
Send tomato & weed locations to spray controller 37.44 10.88 
Miscellaneous commands 11.03 3.20 
Total time 340.90 100.00 

 

 



 198

4.2.3 Separation of touching leaves: Watershed method 

 Occlusion has been one of the most difficult obstacles in machine vision 

recognition of outdoor scenes since occluded objects are difficult to identify.  Multiple 

occluded objects appear as one object in the segmented binary image, producing an 

unusual set of feature values.  In this chapter, the watershed algorithm (Vincent and 

Soille, 1991) was implemented to cut apart the occluded leaves, as a preprocessing step 

to improve object identification.     

The implementation of the original watershed algorithm did not work very well 

and tended to produce excessive cutting.  As discussed in chapter 3.3.3.8, this is due to 

the fact that every regional minima becomes the center of a catchment basin.  Some 

examples of watershed over cutting are shown in Figure 4.10 (c).  The black arrows in 

the figures in this chapter indicate either excessive cutting (      ) or improper object 

separation (        ).  A star (*) indicates a properly cut leaf.  The original algorithm 

produced 15 over cut leaves, 2 uncut leaves and 4 properly cut leaves. 

The original watershed algorithm was modified in five different ways to reduce 

excessive cutting.  When occluded objects, excessively cut by the original algorithm, 

were properly separated by a modified watershed algorithm, the plant leaves were 

labeled with numbers in the figures in this chapter.  



 199

     

I* 

 

     

II 

* 
 

     

III

 

      

IV 
* 

   

     

V

* 

 
 

(a) Color images. (b) Binary images. (c) Over cutting. 
Figure 4.10 Examples of over cutting or improper separation (black arrows) by the 

original watershed algorithm. 



 200

Figure 4.11 shows the results of the watershed algorithm modified with opening.  

Many of the instances of over cutting were avoided (labeled as 1 - 9 in Figure 4.11) by 

applying the opening operation since it connected local minima into a larger connected 

component.  However, some objects were still excessively separated and the opening 

operation could not remove all of the instances of over cutting.   

Let m1 be the number of occluded leaves over cut, m2 be the number of uncut 

leaves, m3 be the number of properly cut leaves and m4 be the adjusted number of 

correctly cut leaves (= m3 - m2). Considering there were 15 over cut leaves, 2 uncut 

leaves and 4 properly cut leaves by the original algorithm (Figure 4.10 (c)), m4 would be 

2 for the original algorithm.  Then, the excessive cutting improvement from a  

modification can be calculated as the adjusted number of correctly cut leaves minus 2, 

i.e.,  

Improvement = 
m  -  2

 x 100
4
15

 (%). (4.1)
 

  The opening modification resulted in 7 over cut leaves, 2 uncut leaves, and 12 

properly cut leaves in the 5 images in Figure 4.11.  The improvement from this 

modification was calculated as 

10
15
 -  2

 x 100 =  53.3  (%). 



 201

      

1

* 2 

* 

   I      II 
 

      

3 

4 

* 

5

   III      IV 
 

 

7 6 

8 
* 

V 
 

Figure 4.11  Results of watershed algorithm modified with the opening operation. 



 202

Figure 4.12 shows the result of the pre-flooding algorithm using a flooding level 

up to heights of 251, 252 and 253 respectively for each of the 5 images in Figure 4.10.  

The typical range of pixel values for the local minima in cotyledons after distance 

transformation was around 250 since they were usually long and thin.  Other leaves 

including true leaves and occluded leaves had local minima as low as about 230, 

depending on their size.  If the pre-flooding level was too low, the operation was 

ineffective in reducing over cutting.  On the contrary, if the pre-flooding level was too 

high, the objects were not cut properly.  For example, the pre-flooding level of 251 

produced 11 over cut objects, 3 uncut leaves, and 7 properly cut leaves (Figure 4.12 (a)), 

whereas the pre-flooding level of 253 produced no over cut leaves, and 12 properly cut 

leaves with 9 uncut leaves (Figure 4.12 (c)).  The adjusted number of correctly cut leaves  

after pre-flooding were 4, 5, and 3 for pre-flooding levels of 251, 252, and 253 

respectively.   Thus, using Eq. (4.1), the improvement from the modification with 

pre-flooding levels of 251, 252, and 253 were 13.3%, 20.0%, and 6.7% respectively, 

considering 15 over cut leaves produced by the original algorithm.  The appropriate level 

of pre-flooding varied with object shape.   

The spatial resolution might affect the pre-flooding technique because with a 

spatial resolution greater than the current resolution, 0.45 mm/pixel (= 114.3 mm / 256 

pixel), there would be a greater range of pre-flooding levels to work with.  There might 

be a minimum spatial resolution for pre-flooding to work properly on objects of a certain 

size.   

In applying the watershed algorithm, over cutting due to noise needs to be 

considered.  The noise could come from the digitization of an image and a low spatial 



 203

resolution image would not represent  long and thin objects very well.  For example, in 

some cases the presence or absence of a single pixel along the boundary of a cotyledon 

(refer to Figure 3.26 (c), page 73) could lead to proper or non-proper cutting by the 

watershed algorithm since the single pixel could disconnect the local minima into more 

than two disconnected regions.  As Russ (1990) pointed out, the watershed algorithm has 

two implicit assumptions (of a convex object and sufficiently small overlap between 

objects), the convex object assumption did not always apply to overlapped plant leaves 

particularly when boundary noise causes local concavities. This is probably why the 

opening (smoothing) technique had the best performance of the modifications attempted.  

However, more study would be needed to investigate the relationship between the 

pre-flooding technique and the spatial resolution.       



 204

       

1 I* * *

 

       

3 II 2 

* 
 

       

 41 1

III 

5 

6 

 

       

72
2 IV 8 3

* * * 
9

 

       

3  4 10 V 
116

5* *

 

(a) Pre-flood level: 251. (b) Pre-flood level: 252. (c) Pre-flood level: 253. 
 

Figure 4.12  Result of watershed algorithm modified by pre-flooding. 



 205

The third modification was to determine when the watershed algorithm needs to 

be applied based on the features of AREA, ELG, and CMP.  Figure 4.13 shows the 

images resulting from the use of this feature criteria.  This modification produced 6 over 

cut leaves, 3 uncut leaves, and 12 properly cut leaves, which led a 46.7% excessive 

cutting improvement, giving more appropriate cutting results than using the pre-flooding 

modifications.  Comparing the performance of this modification with the one from 

opening modification, there was only one more correctly cut leaf from opening 

modification than from the feature criteria modification.  Thus, these two modifications 

could be considered to have a similar level of performance (improvement).  In order to 

validate the performance of this modification, more samples would be needed to obtain 

more accurate feature ranges for applying the watershed algorithm.    



 206

       

1

*  2 

* 

   I      II 
 

      

3 

5 
4 

6

   III      IV 
 

 

7 8 

9 * 

V 
 

Figure 4.13 Result of watershed algorithm modified by the feature criteria. 



 207

 Figure 4.14 shows the results of using the concavity criteria to determine the 

watershed algorithm application.  Like the modification with the feature criteria, this 

modification determined selective application of the watershed method to objects.  Some 

leaves could benefit by the criteria, be hurt (skipped or not properly cut) by the 

modifications or fixed by opening or pre-flooding.  This modification produced 11 over 

cut leaves, 2 uncut leaves and 8 properly cut leaves.  The performance of this 

modification (26.7% improvement) was a lot worse than the modification with the 

feature criteria, Table 4.34.  

 

Table 4.34 Comparison of feature criteria and concavity criteria with the number of 
leaves benefiting from, hurt by, could be fixed by opening or pre-flooding by 
the modifications. 

 
Number of leaves Feature criteria Concavity criteria

Benefited from modification 9 4 
Hurt by modification 1 0 

Over cut leaves could be fixed by opening 
or pre-flooding 

5 8 

 



 208

       

1

* 2 

* 

   I      II 

       

3 

* 

   III      IV 
 

 

4 

* 

V 
 

Figure 4.14  Result of applying number of concavities to the watershed algorithm. 



 209

 Finally, the modification with opening and the feature criteria were applied 

together to optimize cutting.  Figure 4.15 shows the results of this combined modification 

of the watershed algorithm which reduced over cutting by 62.5% (reducing over cut 

leaves from 16 to 6).  However this modification still produced over cut objects with the 

same improvement rate of 43.8% as the modifications with opening operation and feature 

criteria.   

 Comparing the results in Figure 4.11 - 4.15 from all methods applied so far 

(opening operation, pre-flooding, feature criteria, number of concavities, and opening 

and feature criteria) with the original algorithm, all modifications produced improved  

results when compared to the original watershed algorithm.  The performance of the 

modifications are summarized in Table 4.35.   

 

Table 4.35 Performance of different modified watershed algorithms, compared to the 
original method. 

 
Method No. of 

occluded 
leaves 

over cut  
(m1)  

No. of 
occluded 

leaves 
uncut  
(m2) 

No. of 
occluded 

leaves 
properly 
cut (m3) 

Adjusted no. of 
correctly cut  

leaves 
(m4=m3-m2) 

Improvement from 
modification  

((m4-2) / 15 x 100, 
%) 

W0 15 2 4 2 0.0  
W1 7 2 12 10 53.3 

W2 - 251 11 3 7 4 13.3 
W2 - 252 8 4 9 5 20.0 
W2 - 253 0 9 12 3 6.7 

W3 6 3 12 9 46.7 
W4 11 2 8 6 26.7 
W5 6 3 12 9 46.7 

 



 210

Although the five modifications could be divided into two groups, these fixing the 

watershed algorithm (W1 and W2) and those applying the algorithm selectively (W3 and 

W4), their performance was listed in the same table for simplification.  

The performance of the opening modification is a lot better (53.3% improvement) 

than the pre-flooding technique (6.7% - 20.0% improvement).  In the pre-flooding 

technique, the pre-flooding level of 252 was a little better than the levels of 251 and 253. 

The performance of the feature criteria modification was a lot better than the 

modification with the concavity criteria.  The combined modification (W5 algorithm) of 

opening operation and feature criteria showed same improvement as when they were 

applied separately.  Overall, as stated before, W1, W3 and W5 algorithms showed the 

same level of performance (only one correctly cut leaf difference).  Thus, the best 

modifications were the application of opening, feature criteria and the combined 

modification of opening and feature criteria.     

However, no one method produced perfect cutting results.  The watershed 

algorithm might not be ideal for separating occluded plant leaves when the local minima 

was composed of more than two disconnected regions.  In this case watershed algorithm 

required additional information or modification to produce more accurate results.  The  

watershed algorithm (Vincent and Soille (1991)) seemed to have a basic problem of over 

cutting when the local minima was composed of two or more disconnected regions.   

 
 



 211

      

1

* 2 

* 

   I      II 
 

      

3

5

4 

6 

   III      IV 

 

87 

9

V 
 

Figure 4.15  Result of application of both opening and the feature criteria  
to the original watershed algorithm. 



 212

Since the objective of this research was to build a real-time weed control system, 

the execution time for the original and the modified algorithms was roughly measured, 

Table 4.36, just to show that these methods could not be implemented in real-time using 

a 200 MHz Pentium Pro CPU.  The execution time for the watershed algorithm was 

measured from the step of making the distance function of the occluded binary leaf to the 

step of obtaining the separated leaves.  In this task, the second image (II) from the top in 

Figure 4.10 was used as the test image since the number of leaves in that image was 

typical of these in the study.  Each result listed in Table 4.36 was the average of 10 

executions using a 200 MHz Pentium Pro processor. 

  

Table 4.36  Execution time of original and modified watershed algorithms. 

Modification Description Execution time (sec) 
W0 Original algorithm 16.69 
W1 Opening operation 19.68 

W2 - 252 Pre-flooding 17.73 
W3 Feature criteria 14.79 
W4 Concavity criteria 14.64 
W5 Opening & feature criteria 16.70 

 

The modifications with feature criteria (W3) and concavity criteria (W4) took the 

least time since the watershed subroutine was not applied to some objects, which were 

non-occluded.  Modifications with the opening operation (W1) took the most time since 

sorting of pixel values and matching pixel locations with each pixel address were 

repeated as many as three times.  Modifications with opening operation and feature 

criteria combined (W5) took almost same time as the original algorithm since in the 

original algorithm the watershed was applied to all objects, whereas the watershed and 



 213

opening operation were only applied to those objects which satisfied  the feature 

conditions in the modification with opening and feature criteria combined.   

 Despite its time limitation, the watershed algorithm could help in identifying 

occluded objects more correctly.  Figure 4.16 shows some examples of correctly 

identified objects before and after the watershed algorithm (modified with feature criteria 

and concavity criteria combined with pre-flooding up to 252) was applied.  In all of the 

five test images, 15 tomato leaves were correctly recognized after the watershed 

algorithm application, which were incorrectly recognized as 7 occluded leaves without 

the watershed algorithm.  For the recognition subroutine, the following rule of ELG and 

CMP were applied, which were obtained from the database previously built. 

 

If 0.261 < ELG < 0.875 and 0.450 < CMP < 1.073, then identify as tomato plant. 

Otherwise, identify as weeds.    

 

In order to estimate the impact of the watershed algorithm on plant classification 

rate, 12 field images were selected randomly, not including the previous 5 test images.  

For each image, the normal plant identification algorithm with the above rule and the 

modified watershed algorithm with feature criteria and concavity criteria combined with 

pre-flooding up to 252 were executed and the number of correctly recognized and 

incorrectly recognized objects were counted, Table 4.37 - 4.38. 

For occluded cotyledons, the normal algorithm correctly identified 28.6% of 

them, however, with the modified watershed algorithm 61.9% of them were correctly 

identified.  For occluded true leaves, the identification rate increased from 11.8% to 



 214

52.9% after the application of the modified watershed algorithm.  Thus, if the watershed 

algorithm could be implemented in real-time, it could help to identify plants more 

correctly.   

Table 4.37 Recognition results with normal identification algorithm and without  
watershed application. (C = Correctly identified, I = Incorrectly 
identified) 

 
 Cotyledon True leaf Weed 
 Non-

occluded 
Occluded Non-

occluded 
Occluded Non-

occluded 
Occluded 

 C I C I C I C I C I C I 
No. of 
leaves 

17 1 6 15 10 10 4 30 10 1 2 0 

% 94.4 5.6 28.6 71.4 50.0 50.0 11.8 88.2 90.9 9.1 100.0 0.0
 
 

           Table 4.38 Recognition results with modified watershed algorithm (feature 
criteria, concavity criteria with pre-flooding up to 252). 
(C = Correctly identified, I = Incorrectly identified) 

 
 Cotyledon True leaf Weed 
 Non-

occluded 
Occluded Non-

occluded 
Occluded Non-

occluded 
Occluded 

 C I C I C I C I C I C I 
No. of 
leaves 

17 1 13 8 10 10 18 16 10 1 2 0 

% 94.4 5.6 61.9 38.1 50.0 50.0 52.9 47.1 90.9 9.1 100.0 0.0
 

The watershed algorithm may not be feasible for real-time implementation for 

now due to the over cutting problem and time limitations due to intensive computation 

with current computing technology.  However, in the near future it may be possible to 

implement it in real-time making it suitable for use in a real field application. Thus, 

further research would be appropriate in order to improve  the separation accuracy and to 

achieve faster execution. 



 215

                                        

I 

 

                                        

II 

 

                                        

III

 

                                        

I

 

                                        

V

 

(a) Without watershed algorithm. (b) With watershed algorithm. 
  

Figure 4.17 Comparison of recognition result without and with watershed algorithm. 



 216

4.3 Performance of precision chemical application system 

4.3.1 Displacement sensor performance 

Tests were conducted in order to observe the operation of the displacement sensor  

alone on different ground surfaces (soil surface, paved road, and smooth concrete 

surface).  The precision spraying system was set to spray all 8 valves at a predetermined 

spacing. The distance between each of the two sprayed lines was measured, subtracted 

from the predetermined spacing and considered as errors.  

The absolute values of the position errors were taken and their mean and standard 

deviations were summarized, Table 4.39.  The mean position error on the smooth 

concrete surface was smaller than those from the soil surface or the paved road.  The 

standard deviation of the position error from the paved road and the smooth concrete 

surface were smaller than that of the soil surface.  This shows that the displacement 

sensor worked more consistently on a smoother surface. The drops sprayed on the paved 

road and smooth concrete surface seemed to be better aligned and more uniform than 

those sprayed on the soil surface.  The overall mean error of the precision spraying 

system without any image processing operation was 0.15 cm and the standard deviation 

was 0.19 cm. 

 

Table 4.39  Performance of displacement sensor on different ground surfaces. 
 

 Soil  
surface 

Paved  
road 

Smooth concrete 
surface 

Total 

No. of readings 73 57 228 358 
Mean (cm) 0.23 0.15 0.12 0.15 

Std. Deviation (cm) 0.19 0.14 0.15 0.19 
 



 217

Many sources of error were observed during field tests of the displacement 

sensor.  Even with the gage wheel, the displacement sensor did not always work 

consistently (i.e., did not generate the same number of pulses for the same distance).  

This was due to the fact that there were bumps, clods, or irrigator’s footsteps on the bed 

where the gage wheel traveled, or the compactability of the soil was different from one 

field to another.  The circumference of the gage wheel, which affected the number of 

pulses generated from the encoder, also varied with tire pressure and load exerted on the 

gage wheel by the toolbar and equipment. One example of toolbar effect on imaging and 

spraying was the circumference change of the gage wheel by lifting or lowering the 

toolbar.  For every field test the encoder was calibrated for a pre-measured distance.  The 

pre-measured distance was then divided by the number of encoder counts and distance 

per count was obtained to calculate the three parameters of the microcontroller.  Then, 

prior to every field test, the toolbar was lifted from the ground to set the encoder to its 

initial image acquisition position by turning the gage wheel manually. Then, the toolbar 

was put down.  However, the circumference of gage wheel changed after it was put down 

on the ground since it was not put down exactly in the same way. 

The prototype was tested with full weight and light weight exerted on the gage 

wheel on the paved road.  When the toolbar was lowered fully (full weight), the precision 

spraying system sprayed 34 times in 750.57 cm, which resulted in 22.08 cm distance 

between spray drops.  When the toolbar was only lowered until the gage wheel just 

touched the paved road (light weight), the precision spraying system sprayed 32 times in 

746.76 cm, which resulted in 23.34 cm distance between spray drops. There was 1.26 cm 



 218

(= 23.24 cm - 22.08 cm) difference for the same distance sensed depending on the weight 

exerted on the gage wheel. 

The encoder resolution was about 0.13 mm per count, a small change of the 

circumference of the gage wheel would affect the performance of the prototype greatly.  

When this happened the image size was not 11.43 cm wide anymore and the precision 

spraying system would spray the wrong location for the weeds even though the computer 

vision system correctly identified weed locations. 

 

 

4.3.2 Spray targeting accuracy without imaging 

In order to isolate problems within the scope of the precision spraying system, the 

prototype was set to spray a predetermined “imaginary” weed pattern without taking any 

images and with no targets on the ground.  Four types of ground surface were used to test 

the system with two different error measuring methods.  The error were from the center 

of the target to the center of the spray drops and even when there was an error, it did not 

mean that the target was missed, only that the spray was not centered on the target. 

 

Errors measured by Method I

Method I measured spray errors referenced from the starting line (beginning of 

the first image) of each test.  Figures 4.17 - 4.18 and Table 4.40 show the average error 

from the  spraying-only experiment on four different surfaces using analysis method I.  

Note that the errors accumulated as the travel distance increased (Figure 4.17 (a) and (c) 

and Figure 4.18 (a) and (c)). This was due to the measurement method (Method I), which 



 219

leads inevitably to the accumulation of errors since incremental motion information is 

used over time, i.e., dead reckoning (Borenstein et al. 1996).  Even though the encoder 

was calibrated prior to each test, the accumulation of error was unavoidable since 

calibration itself may not be accurate due to unknown effective radius of tire or slippage 

of the gage wheel.  In addition to gage wheel slippage, there may be other sources of 

errors for dead reckoning which are systematic: unequal wheel diameter, misalignment of 

wheel, finite encoder resolution, finite encoder sampling rate, and which are 

non-systematic: travel over uneven floors or unexpected objects on the ground surface. 

However, method I was not appropriate for measuring the error of this 

experiment since the nozzles were located 17.0 cm (about 1½ images) behind the center 

of the camera and the nozzles needed to travel only 17.0 cm before they were activated.  

If the displacement sensor was inaccurate in this 17.0 cm distance, then the spray would 

miss the target.  Thus, as long as the encoder wheel was accurate in the 17.0 cm distance, 

the prototype would spray accurately.  The average error in y direction indicated that how 

straight the prototype traveled during the tests.     



 220

 

 

 

0.00

0.50

1.00

1.50

2.00

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

       

-0.60

-0.40

-0.20

0.00

0.20

0.40

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

 

(a) Smooth concrete floor: x - direction. (b) Smooth concrete floor: y - direction. 
 

 

0.00

0.20

0.40

0.60

0.80

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

      

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

 

(c) Asphalt: x - direction. (d) Asphalt: y - direction. 
  

 

Figure 4.17  Average spray errors measured by Method I on concrete floor and asphalt. 



 221

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

      

-0.60

-0.40

-0.20

0.00

0.20

0.40

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

 

(a) Medium tomato bed: x - direction. (b) Medium tomato bed: y - direction. 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 20 40 60 80 100 120

Travel distance (cm)

A
cg

. E
rr

or
 (c

m
)

      

-0.60

-0.40

-0.20

0.00

0.20

0.40

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

 

(c) Rough tomato bed: x - direction. (d) Rough tomato bed: y - direction. 
  

Figure 4.18  Average spray errors measured by Method I on medium and rough beds. 

 

Table 4.40 shows the average spray error and standard deviation on four surfaces 

calculated in the x (travel) direction, the y direction (perpendicular to travel direction), 

and x & y directions simultaneously (= x y2  +  2∑ ).  The average error in the x 

(travel) direction increased in the following surface order: asphalt → medium bed → 

smooth concrete surface → rough bed.  Surprisingly, the medium bed had a smaller 

average error than the smooth concrete floor.  Except for the smooth concrete surface, the 

results confirmed that the displacement sensor worked better on a smoother surface. 



 222

    Table 4.40  Average error and standard deviation on different surfaces by  
Method I. 
 

(unit: cm) Avg. Error Std. Dev. of Error 
Surface x y (x & y) x y (x & y) 

Smooth concrete floor 0.658 -0.116 0.704 0.363 0.169 0.352 
Medium bed 0.405 -0.173 0.541 0.178 0.208 0.189 
Rough bed 1.443 -0.262 1.530 0.887 0.199 0.848 

Asphalt 0.218 -0.097 0.349 0.130 0.228 0.141 
 

 

Errors measured by Method II

Method II measured spray errors referenced from the relative position at the time 

of spraying.  The positions of the actual spray drops were measured based on the line 

(Line A in Figure 3.37) where the camera was aligned at the time of spraying  (Figure 

3.37). Table 4.41 shows the average spray error and standard deviation of errors 

measured by Method II on different ground surfaces.  Again the average spray error and 

standard deviation on four surfaces were calculated in the x (travel) direction, the y 

direction (perpendicular to travel direction), and x & y directions simultaneously (= 

x y2  +  ∑ 2 ).  The error level was reduced by almost 50% of that from Method I for all 

surfaces.  

 

Table 4.41  Average error and standard deviation on different surfaces by Method II. 

 (unit: cm) Avg. Error Std. Dev. of Error 
Surface x y (x & y) x y (x & y)

Smooth concrete floor 0.277 0.101 0.388 0.150 0.216 0.155 
Medium bed 0.281 0.016 0.363 0.133 0.187 0.127 
Rough bed 0.663 0.121 0.759 0.203 0.292 0.237 

Asphalt 0.162 -0.024 0.273 0.087 0.205 0.115 



 223

Comparing the average spray errors from the fixed spacing test in Table 4.39, the 

average spray errors of spraying an imaginary weed pattern were generally similar to 

those of displacement sensor except on the smooth concrete floor.  The average spray 

errors on the soil surface in the x direction were 0.23 cm for the fixed spacing test and 

0.28 cm for spraying an imaginary weed pattern.  On the asphalt, the average spray errors 

were 0.15 cm for the fixed spacing test and 0.16 cm for spraying an imaginary weed 

pattern.  However, on the smooth concrete floor, the average spraying error for spraying 

an imaginary weed pattern (0.28 cm) was more than twice the one for the fixed spacing 

test (0.12 cm).  This might be because errors were measured for each  imaginary weed 

location for spraying imaginary weed patterns whereas the error was measured based on 

only one spray drop location for the fixed spacing test.    

When analyzed using Method II, the level of errors were smaller than with 

Method I, but the errors still seemed to be accumulated along the travel distance (Figure 

4.19 (a) and (c), and Figure 4.20 (a) and (c)). 

 



 224

 

 

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

      

-0.40

-0.20

0.00

0.20

0.40

0.60

0 20 40 60 80 100 120

Travel distance (cm)

A
cg

. E
rr

or
 (c

m
)

 

(a) Smooth concrete floor: x - direction. (b) Smooth concrete floor: y - direction. 
 

 

0.00

0.10

0.20

0.30

0.40

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

      

-0.40

-0.20

0.00

0.20

0.40

0.60

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

 

(c) Asphalt: x - direction. (d) Asphalt: y - direction. 
  

 

Figure 4.19  Average spray errors measured by Method II on concrete floor and asphalt. 



 225

 

 

0.00

0.20

0.40

0.60

0.80

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

      

-0.40

-0.20

0.00

0.20

0.40

0.60

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

 

(a) Medium tomato bed: x - direction. (b) Medium tomato bed: y - direction. 
 

 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

      

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

 

(c) Rough tomato bed: x - direction. (d) Rough tomato bed: y - direction. 
  

 

Figure 4.20  Average spray errors measured by Method II on medium and rough beds. 



 226

 In order to see if the errors measured from 4 different surfaces linearly increased 

with the travel distance, a linear regression analysis was conducted with the travel 

distance as an independent variable and error as a dependent variable and a t-test was 

performed to see if the slope was significantly different from 0 with a significance level 

of 0.05.  The results are listed in Table 4.42.   

 

Table 4.42 Result of linear regression between the travel distance & errors and a t-test 
for the slope to see if it was significantly different from 0 (where NS: not 
significantly different and *: significantly different with a significance level 
of 0.05). 

 
Surface Term Estimate Std. error t ratio Prob. > |t| 
Smooth 

concrete floor 
Slope 0.000384 0.000758 0.51 0.6155NS

 Intercept 0.255 0.0496 5.14 < 0.0001* 
Asphalt Slope 0.000891 0.000415 2.14 0.0391* 

 Intercept 0.112 0.027225 4.11 0.0002* 
Medium bed Slope 0.00193 0.00059 3.26 0.0025* 

 Intercept 0.172 0.038684 4.44 < 0.0001* 
Rough bed Slope 0.00323 0.000877 3.68 0.0008* 

 Intercept 0.481 0.057436 8.37 < 0.0001* 
 

It turned out that only the slope of the errors from smooth concrete floor was not 

significantly different from 0 and the slopes from other three surfaces were significantly 

different from 0.  Thus, the errors did not accumulate on the smooth concrete surfaces, 

but linearly increased on asphalt, medium bed, and rough beds along the travel distance.  

 



 227

4.3.3 Spray targeting with imaging on different ground surfaces 

In order to estimate the spray accuracy of the prototype system when both 

imaging  and spraying were conducted, five tests were conducted, three outdoors and two 

indoors.  Test results of the precision spraying system with green targets on different 

ground surfaces are shown in Table 4.43.  On tomato beds, the average errors between 

the center of the targets and the spray patterns were 1.36 cm for the abrasive cleaning 

material and 0.66 cm for the metal targets and the standard deviations were 0.71 cm and 

0.49 cm respectively.  The larger error and standard deviation of abrasive cleaning 

material might be due to an error when the microcontroller parameters were set for 

spraying targets.  It was also difficult to measure the error with the abrasive cleaning 

material because it absorbed the spray.  On the paved road, the average spray error and 

the standard deviation of error were 0.79 cm and 0.52 cm respectively. 

 

Table 4.43 Precision spraying system performance with imaging. 

Surface Tomato Bed Tomato bed Paved road Concrete 
floor 

Concrete 
floor 

Target size 2.54 cm dia. 2.54 cm dia. 2.54 cm dia. 2.54 cm dia. 1.27 cm dia.
 

Target 
material 

Green 
abrasive 
cleaning 
material 

 
Green metal 

 
Green paper 

 
Green paper 

 
Green paper

No. of 
targets 

67 99 190 83 285 

Avg. error 
(cm) 

1.36 0.66 0.79 0.51 0.52 

Std. Dev. 
of error 

(cm) 

 
0.71 

 
0.49 

 
0.52 

 
0.21 

 
0.32 

 



 228

One difficulty in this test was to drive the tractor straight.  The locations of the 

spray pattern relative to the center of the target (Figure 4.21) were recorded as shown in 

Figure 4.21 for the paved road and concrete floor tests. On the paved road, the spray 

struck the right side of the targets, indicating that the spraying system traveled to the 

right, not straight.  When the traveling path of the precision spraying system was not 

same as the traveling path of the camera, the location supplied by the computer vision 

algorithm could not be accurately sprayed due to the difference in path.   

 

1

2

3

4

T ravel
DirectionT arget

0

 
 

Figure 4.21  Direction of spray drops from the center of coin. 
 

 

In hallway tests, the targets were sprayed a little later (direction of 1) with 2.54 cm 

diameter targets and a little earlier (direction of 3) with 1.27 cm diameter targets.  This 

fact indicated that the encoder was not well calibrated.   

On the tomato beds, cone wheels were used to guide the toolbar mounted the 

prototype system.  On the paved road, however, there were no guides to keep the tractor 

straight.  Thus, the average error and the standard deviation were a little higher on the 

paved road than on the tomato beds with metal targets.  The average error and the 

standard deviation for the indoor concrete floor tests were the smallest of all tests.  This 

indicates that the precision spraying system worked better on a smoother surface. 

 



 229

Table 4.44  Directions of spray from the precision spray system. 

Surface Paved road Hallway Hallway 
Target size 2.54 cm dia. 2.54 cm dia. 1.27 cm dia. 

Target material Green paper Green paper Green paper 
No. of targets 153 83 285 

% of direction 0 7.8 0.0 2.5 
% of direction 1 20.3 23.8 40.0 
% of direction 2 48.4 26.2 17.5 
% of direction 3 11.1 32.1 21.1 
% of direction 4 12.4 16.7 18.9 

 

0

20

40

60

80

100

120

0 1 2 3 4

Directions

N
o.

 o
f o

cc
ur

re
nc

e

Paved road (2.54 cm Dia.)

Hallway (1.27 cm Dia.)

Hallway (2.54 cm Dia.)

 
Figure 4.22  Directions of spray from the precision spray system. 

 

The following is one example of imaging & spraying from the tests executed for 

the performance of the precision spraying system.  This test was conducted with 1.27 cm 

diameter green paper coins in order to determine the effect of taking images on the 

performance of the precision spraying system.  Figure 4.23 shows the errors in the x and 

y directions and indicates that the error in the travel direction (x-direction) did not 

increase with travel distance.  The error did not accumulate even though the distance was 

measured by the incremental encoder (dead reckoning) over a distance of 120 cm.  This 



 230

was because the maximum distance possible for error accumulation was only the length 

of 17.0 cm (about 1½ images) which was the distance from the camera to the nozzle.  

The average error and the standard deviation are shown in Table 4.45. 

 

Table 4.45 Average and standard deviation of spraying error with imaging. 

(unit: cm) x - direction y - direction x & y direction 
Avg. error 0.321 0.389 0.547 

Std. Dev. of error 0.219 0.236 0.240 
 

0.00

0.20

0.40

0.60

0.80

1.00

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. a
bs

(E
rr

or
) (

cm
)

      

0.00

0.20

0.40

0.60

0.80

1.00

0 20 40 60 80 100 120

Travel distance (cm)

A
vg

. E
rr

or
 (c

m
)

 
(a) x - direction. (b) y - direction. 

 
Figure 4.23  Spraying errors with imaging. 

 

 

Indoor tests of the prototype system with rectangular (“tomato cotyledon”) and 
circular (“weeds”) targets 
 

The precision spraying system was tested indoors on a smooth concrete floor with 

rectangular targets (“tomatoes”) and circular targets (“weeds”) made of green paper in 

order to demonstrate the performance in ideal indoor conditions, and results are 

summarized in Table 4.46. 

 



 231

Table 4.46  Test results of precision spraying system on concrete floor. 

 
Trial 

Travel 
distance 

 (m) 

No. of 
rectangles 
(cotyledon)

No. of 
rectangles 
sprayed 

No. of 
circles 
(weed) 

No. of 
circles not 
sprayed 

1 1.14 23 0 26 0 
2 1.14 6 4 39 0 
3 1.14 22 0 19 0 

Total 3.42 51 4 84 0 
Total error rate 7.8 %  0 % 

  

 All circular targets were sprayed correctly and four of the rectangular targets 

were sprayed incorrectly due to LUT error.  This was due to the fact that the aperture of 

the camera was not open sufficiently and the image was too dark, thus the prototype 

could not recognize the rectangular shape in the binary image.  The overall error for the 

rectangular targets was 7.8% and there was no error in spraying the circular targets.  

Except for the error from the LUT, the prototype worked well on a smooth surface with 

distinct well separated objects. 

 



 232

Comparison of spraying-only test with imaging & spraying test 

 Comparing the errors between the two different indoor tests of spraying-only and  

imaging & spraying tests, the error level from the encoder should be the same since the 

tests were conducted indoors on the same smooth concrete surface, i.e., the effect of the 

encoder remained same during the tests.  The average error on the concrete floor from the 

spraying-only test (0.388 cm in Table 4.41) was a little smaller than the one from 

imaging & spraying tests (0.51 cm in Table 4.43).  The standard deviations of error 

between the two tests were about same magnitude (0.21 cm for imaging & spraying and 

0.155 cm for spraying-only).  The main difference between these two tests was the 

acquisition and processing of images.  The increase in error may be due to inaccuracies 

in knowing exactly when the image was acquired or in synchronizing the imaging 

acquisition with the spray microcontroller.   

In the outdoor tests, many sources of error were observed. First of all, the 

displacement sensor did not always work consistently (i.e., it did not generate the same 

number of the pulses for the same distance). There is also an intrinsic error due to the 

physical distance between the nozzle centers (1.27 cm). If a target is located in the corner 

of a spray cell, the spray error (the distance between the center of the target and the spray 

drop) could be 7.10 mm even though the computer vision system correctly identifies the 

center of the coin, since the spray nozzle would target the spray at the center of the cell.   

The process of sending data to the microcontroller and spraying were same for 

those tests.  The difference in error might come from the prototype software, which took 

images and processed them.  The types of errors from the prototype software might be 

the synchronization of communication between the image processing computer and the 



 233

microcontroller, or any possible image acquisition delays.  Other sources of error might 

be different test settings (inappropriate parameters for the microcontroller, or calibration 

error) and environment conditions (roughness of soil surface, tire pressure) between the 

tests.  

Comparing the test results between indoor test and outdoor test, the average 

difference of indoor tests between imaging & spraying and spraying-only was smaller 

than the one from outdoor tests.  This signifies that the prototype could work more 

consistently on a smoother surface regardless of imaging & spraying or spraying-only 

tasks. 



 234

4.4  Speed of the prototype system and field testing 

Speed of the image processing algorithm

Processing time is a major concern in real-time machine vision applications.  

Since the goal of this research was to develop a real-time robotic weed control system, 

computationally intensive steps were avoided.  Table 4.47 shows the average execution 

times for each image processing step.  For one frame of  a 256 by 240 pixel image 

representing a 11.43 cm x 10.16 cm field of view, the image processing algorithm took 

0.344 s to distinguish 10 tomato cotyledons in the image using only the features of ELG 

and CMP.  Using this algorithm the prototype cultivator could travel at a continuous rate 

of 1.20 km/h.   

 

Table 4.47 Execution time for each image processing step. 

Image processing step Execution 
time (ms)  

Percent of 
Total time 

Prepare image acquisition 0.02 0.01 
Acquire color image (one field) 16.76 4.87 
Transfer and subsample acquired image 27.21 7.91 
Check synchronization of image processing  
computer and spray controller 

2.08 0.60 

Check image buffer overflow 1.19 0.35 
Binarize 2.92 0.85 
Morphology analysis 32.04 9.31 
Label objects 9.89 2.87 
Extract features 144.58 42.00 
Make decision with a Bayesian classifier  0.94 0.27 
Find tomato & weed locations 58.10 16.88 
Send tomato & weed locations to spray controller 37.44 10.88 
Miscellaneous commands 11.03 3.20 
Total time 344.20 100.00 

  



 235

Higher travel speed could be achieved simply by dedicating more image 

processing units to extract the morphological features from the leaves in parallel, since 

the execution time was dependent on the number of objects in an image and feature 

extraction took about 42% of the time to process one image, Table 4.47. 

 

Field testing of the prototype system 

The results of a test of the prototype robotic weed control system performed in a 

commercial processing tomato field in northern California in early May 1997 are shown 

in Table 4.48.  The travel speed was about 0.8 km/hr and the tomato plants ranged from 

just emerging up to the first true leaf stage.  The total number of tomato plants and weeds 

in this field test were 520 and 21 respectively. 

 

Table 4.48  Field test results of the robotic weed control system. 

 
Trial 

Travel 
distance 

 (m) 

No. of 
tomatoes

No. of 
tomatoes 
sprayed 

No. of 
weeds 

No. of 
weeds not 
sprayed 

1 7.62 80 18 1 0 
2 7.62 119 32 2 2 
3 7.62 106 27 4 2 
4 7.62 118 29 2 2 
5 7.62 97 20 12 5 

Total 38.10 520 126 21 11 
Total error rate 24.2 %  52.4 % 

 

When implementing the prototype robotic weed control system, serial 

communication between the image processing computer and the spray microcontroller 

was a problem, especially when the tractor travel speed was faster than the image 

processing speed. For this reason, the valve control subroutine was modified as described 



 236

in Chapter 3.6.4 such that some of the input images would not be processed to keep up 

with the tractor speed when the tractor was moving faster than the image processing 

speed.  However, few images were skipped since  most of the input images had 10 leaves 

or less in them.  

The overall system results from the filed test conducted in a row where most of 

the tomato plants were in the cotyledon stage show that about 24% of the tomatoes were 

sprayed and about 52% of the weeds were not sprayed.  The low percentage of weeds 

sprayed was due to several factors.  

Some weeds were near tomatoes, so they were not sprayed due to the protection 

zone around the tomato leaves.  There were some grass weeds, which looked very similar 

to tomato cotyledons.  Some weeds may have been outside of the camera’s field of view, 

but they were counted as processed objects since it was very difficult to determine the 

exact boundary of the camera’s view. In addition, some tomato plants were hidden by 

weeds, so they were identified as weeds and sprayed. Figure 4.24 shows some of the 

successful precision spray application to weeds by the robotic weed control system. 



 237

 

 
 

 
 

 
 
 

Figure 4.24  Successful precision application of spray on weeds  
by the robotic weed control system. 



 238

There were difficulties in acquiring images out in the fields.  Even with the 

uniform illumination device there were some difficulties,  including very bright sun-light, 

wind, and diurnal changes of plant appearance.  It was not very easy to adjust the focus 

and aperture of the camera by looking at the computer monitor outdoors due to very 

bright sunlight causing glare on the monitor.  The quality of some images, which were 

considered focused and well illuminated out in the field, were not good when they were 

examined afterwards in the lab.  Wind also had great impact on imaging and plant 

recognition performance.  It was an especially windy spring in northern California in 

1997.  Most of the plants were lying down along the direction of wind, and in many cases  

it was impossible for the prototype system to recognize plants from a single top view.   

Real-time implementation of morphological pattern recognition has a trade-off 

with accuracy using the machine vision technology described in this study. 

Computationally intensive steps could not be used due to time constraints even though 

they would produce more accurate results.  A segmentation method for partially occluded 

objects would greatly increase the plant recognition rate, but it could not be used if it was 

very computationally intensive and not one of the built-in functions of the Sharp image 

processing boards.  Tomato plants larger and older than the cotyledon stage have more 

complex shape characteristics and require more computation steps in order to be 

recognized.  The displacement measurement was also a great factor in real-time 

implementation since timing for image acquisition and valve control were done based on 

travel distance.  Bright sun-light would be less of a problem if some kind of shadow such 

as a tarp is used.   

 



 239

4.5  Recognition of transgenic purple tomato plant 

 To overcome some of the difficulties of using leaf morphology to recognize 

tomato plants especially when the plant leaves are overlapped or are at a larger growth 

stage than cotyledons, the feasibility of identifying tomato plants by their color alone was 

investigated using tomato plants with “purple” foliage.   

The following figure shows an example of the purple tomato processing 

algorithm.  Fig. 4.25 (d) is the result of one 4 connected erosion of the binary image (b), 

and (e) is the result of a delete-isolated points operation on image (c).  Fig. 4.25 (g) 

shows the raw color image overlaid with spray cells to be sprayed and protected.  The red 

cells are to be sprayed, the green cells are the center of the purple tomato leaves, which 

are not sprayed and protected, and the blue cells are the buffer zone to protect purple 

tomato plants from spray drift.  

Table 4.49 shows the processing time for the transgenic purple tomato plant 

recognition algorithm.  In this implementation, image acquisition was the most time 

consuming operation, which took 33.9% of the total processing time (16.76 ms for 

acquiring one field, and 27.21 ms for transferring and subsampling by column).  The next 

most time consuming step was to send plant locations to the microcontroller (28.9%).  In 

this trial, a baud rate of 9600 was used, however if the baud rate is increased, more time 

could be saved. 



 240

 
(a) Raw color image of a transgenic purple tomato plant and weeds. 

 

                             
(b) Raw binary image for purple plants.  (c) Raw binary image for green weeds.

 

                             
(d) Processed purple binary image. (e) Processed green binary image. 

 

                             
(f) Transgenic tomato plant recognized in 

green and weeds shown in red on a 
spray cell grids. 

(g) Center of protection zone ( ),  
protection zone ( ), and spray zone ( ) 

overlaid on original color image. 
  

Figure 4.25  Example of transgenic purple tomato plant recognition. 



 241

Table 4.49  Execution time for each image processing step. 

Image processing step Execution time (ms) Percent of total 
time 

Prepare image acquisition 0.02 0.02 
Acquire image (one field) 16.76 12.92 
Transfer and subsample acquired image 27.21 20.98 
Check synchronization of image 
processing computer and microcontroller

2.08 1.60 

Check image buffer overflow 1.19 0.92 
Binarize purple tomatoes 2.92 2.25 
Pre-process purple binary image 3.20 2.47 
Binarize green weeds 2.92 2.25 
Pre-process weed binary image 3.20 2.47 
Find cells to be sprayed and protected 21.72 16.75 
Send tomato & weed locations to 
microcontroller 

37.44 28.87 

Miscellaneous commands 11.03 8.50 
Total time 129.69 100.00 

 

To find spray cells for tomato plants and weeds, only two points (instead of 5 as 

in the normal algorithm) in a spray cell were used to determine whether to spray the cell.  

To make the algorithm that determines which spray cells contain weeds smarter, the 

process of checking cells needs to be stopped as soon as a weed is detected in the cell or 

the starting point of the cells could be at the centroid of a weed in determining which 

cells to check in order to try and skip some cells. Compared with the results for the 

morphology based algorithm, only the image acquisition and sending valve array routines 

remained the same, Table 4.49.  The whole process took 129.69 ms for a field of view of 

11.43 cm by 10.16 cm, thus the prototype system could travel at speeds up to 3.17 km/hr. 

Figure 4.26 shows example results for images containing purple tomato plants.  

The images in Figure 4.26 (a)-(d) illustrate very complex scenes, in which purple tomato 

plants  were recognized correctly even though the tomato plants and weeds were highly 



 242

overlapped.  Figure 4.26 (e) - (f) shows an example of a weed growing underneath of a 

tomato plant.  In this example, the tomato cotyledon was damaged but was still 

recognized correctly without any difficulty even though the leaf pattern was distorted, 

while Figure 3.22 (b) showed a similar image with a normal green tomato that could not 

be recognized by the leaf morphology algorithm. 



 243

                             
(a)  Raw color image.  (b)  Recognition result. 

 

                             
(c)  Raw color image.  (d)  Recognition result. 

 

                             
(e)  Raw color image.  (f)  Recognition result. 

 

                             
(g)  Raw color image.  (h)  Recognition result. 

 
Figure 4.26  Example scenes showing transgenic purple tomato plant recognition. 

In (b), (d), (f), and (h) the tomato plants are shown in green and weeds 
in red. 



 244

5.  SUMMARY AND CONCLUSIONS 

5.1  Real-time prototype system 

A real-time intelligent robotic weed control system was developed and tested for 

non-occluded plant leaves in commercial processing tomato fields for selective spraying 

of in-row weeds using a machine vision system and a precision chemical application 

system.  The machine vision system was composed of the SHARP image processing 

boards, a color video camera, a multifunction I/O board, a Pentium Pro 200 MHz CPU, 

and plant recognition algorithms. The precision chemical application system was 

composed of a microcontroller, a manifold, a specially designed accumulator, 8 solenoid 

valves and micro-spray nozzles, valve control circuits, a valve control software.  A 

Bayesian decision rule and a real-time LUT conversion board (AUXLUT card) were 

utilized in segmenting color images and thus made real-time implementation possible. 

The image processing algorithm took 0.344 s to identify 10 tomato cotyledons in 

the image using only the features of ELG and CMP, for one frame of  a 256 by 240 pixel 

image representing a 11.43 cm x 10.16 cm field of view.  Thus, the prototype cultivator 

could travel at a continuous rate of 1.20 km/h.   

The prototype robotic weed control system was tested in commercial tomato 

fields in northern California from March to May 1997.  Overall the robotic weed control 

system correctly identified and did not spray 75.8% of the tomato plants and correctly 

sprayed 47.6% of the weeds.   

 

 

 



 245

5.2 Performance of precision chemical application system 

Tests were conducted in order to observe the operation of the displacement sensor  

alone on different ground surfaces (soil surface, paved road, and smooth concrete 

surface).  The overall mean error of the precision spraying system without any image 

processing operation was 0.15 cm and the standard deviation was 0.19 cm.   

In order to isolate problems within the scope of the precision spraying system, the 

prototype was set to spray a predetermined “imaginary” weed pattern without taking any 

images and with no targets on the ground using four types of ground.  The errors were 

measured based on the relative position at the time of spraying.    The average error in the 

travel direction increased in the following surface order: asphalt → smooth concrete 

surface → medium bed → rough bed, ranging from 0.162 cm to 0.663 cm.  The standard 

deviation of the error was ranged from  0.087 cm to 0.203 cm.   

In order to estimate the spray accuracy of the prototype system, five tests were 

conducted with real targets, three outdoors and two indoors. In these tests both imaging 

and spraying operations were conducted.  On tomato beds, the average errors between the 

center of the targets and the spray patterns were 1.36 cm for the abrasive cleaning 

material and 0.66 cm for the metal targets and the standard deviations were 0.71 cm and 

0.49 cm respectively. On the paved road, the average error and the standard deviation of 

error were 0.79 cm and 0.52 cm respectively.  On concrete floor, the average error and 

the standard deviation of error were 0.51 ~ 0.52 cm and 0.21 ~ 0.32 cm respectively. 

The average error on the concrete floor error from the spraying-only test (0.39 

cm) was a little smaller than the one from imaging & spraying tests (0.51 cm). The 

standard deviations of error between the two tests were about same magnitude (0.21 cm 



 246

for imaging & spraying and 0.16 cm for spraying-only).  Comparing the outdoor tests on 

the tomato bed, paved road and asphalt surfaces, the average error from the spraying-only 

tests was smaller than that from the imaging & spraying tests. 

Comparing the test results between the indoor test and the outdoor test, the 

average difference of indoor tests between imaging & spraying and spraying-only was 

smaller than the one from outdoor tests.  This signifies that the prototype could work 

more consistently on a smoother surface regardless of imaging & spraying or 

spraying-only tasks.     

 

5.3 LUT performance 

The LUTs made in HSI color space were generally better than those made in rgb 

color space and RGB color space and the LUTs built in rgb color space were better than 

those in RGB color space.  In HSI color space, the LUTs built using only the H 

component (LutHC3 and LutHC2) were better than those made with H and S components 

(LutHSC2 and LutHSC3) and those made with H, S, and I components (LutHSIC2 and 

LutHSIC3).  Adding the S and the I components to the H component did not produce 

better results in LUT performance.  Overall, LUT’s built only with hue gave the best 

performance, correctly classifying 77.8% of color pixels. 

There were three types of noise in the background: single point, small cluster, and 

big cluster.  These types of noise were easily removed in most situations.  Thus, the 

performance of a LUT was evaluated by the plant error rate.  The execution time for 

removing background noise was directly proportional to the noise in the segmented 

image, however several steps (over 10 ms) of removing background noise could be saved 



 247

if there was less noise in the segmented image.  The LUTs were also evaluated with 

single point noise (isolated pixels) removed from the binary images.  However, the results 

were similar to the previous ones. 

 

5.4  Plant recognition performance 

 All images were divided into two groups of good and bad image quality based on 

the focus, camera aperture, wind, cotyledon opening, state of maturity, and occlusion. 

From each group, a training set and a validation set were created in order to estimate the 

plant recognition performance by the image processing algorithm.  For the good image 

group, a total of 117 images were used in  the training set and 157 images were used in 

the validation set.  For the bad group, a total of 129 images and 133 images were used 

respectively.   

Three methods were used to select the best feature subsets for real-time 

identification of tomato plants and weeds.  The first method was to use canonical 

discriminant analysis and principal component analysis and the subset [AVGABSC, 

ATL, ATP, PTB, CMP, ELG, HET, MNX, MTM, NEG, OCCR, PTC, and PTP] was 

selected as the best set.  The classification rates for the validation data set were 98.0% for 

tomato cotyledons for the good image group and 92.7% for the bad image group. The 

classification rates for the tomato true leaves were 52.5% for the good image group and 

60.4% for the bad image group.  The identification rate for the weed class in the 

validation data set was 77.2% for the good image group and 45.2% for the bad image 

group.    



 248

 The second method was to try to reduce the number of features to the most 

important subset for real-time field by correlation analysis use and linear regression 

model selection based on the R2 criteria.  By this method, the set [MNX, CMP, LTP, and 

OCCR] was selected as the best set.  The calculation time for this set was 64.1 ms.  This 

feature subset correctly classified 87.3% of tomato cotyledons, 38.6% of tomato true 

leaves, and 94.6% of weeds in the good image group of the validation data set, and 

87.8% of tomato cotyledons, 9.9% of tomato true leaves and 72.0% of weeds in the 

image bad group of the validation data set.   

 The final method selected the set [AREA, LTP and OCCR] by trial and error.  

This set was also selected as the final best set for real-time field use.  The calculation 

time for this feature subset was 43.6 ms, allowing a travel speed of 1.21 km/h.  In the 

final validation tests with all 4 classes, this best subset correctly classified 80.7% of 

tomato cotyledons, 21.2% of tomato true leaves, and 95.5% of weeds in the good image 

group of the validation data set and 58.5% of tomato cotyledons, 9.0% of true leaves, and 

93.0% of weeds in the bad image group of the validation data set.  The third group of 

tomato plant leaves, which were curled, occluded, eaten by bugs, and partially hidden by 

the edge of the image, was introduced and classified with the best feature subset.  This 

feature set also correctly classified 12.9% of the tomato third group in the good image 

group and 8.9% in the bad image group of the validation data sets.     

 

5.5  Separation of touching leaves: Watershed method 

 Occlusion has been one of the most difficult obstacles in machine vision 

recognition of outdoor scenes since occluded objects are difficult to identify.  Multiple 



 249

occluded objects appear as one object in the segmented binary image, producing an 

unusual set of feature values.  In order to overcome these difficulties, the watershed 

algorithm was implemented to cut apart the occluded leaves, as a preprocessing step to 

improve object identification.  Since the original watershed algorithm did not work very 

well and tended to produce excessive cutting, five different modifications were 

implemented to reduce the over cutting problem: modification with an opening  operation 

(W1), modification with pre-flooding (W2), modification with a feature criteria (W3), 

modification with a concavity criteria (W4), and modification with a combined opening 

and feature criteria (W5). 

The performance of W1, W3 and W5 were a lot better (53.3% improvement for 

W1 and 46.7% improvement for W3 & W5) than W2 and W4 modification (6.7% - 

26.7% improvement).  In the pre-flooding technique, the pre-flooding levels of 252 and 

253 were a little better than the level of 251.  However, the execution time for W3 and 

W4 modifications (14.6 - 14.8 s) were the fastest among the modifications.  The W1 

modification took the most time (19.7 s).   

In order to estimate the impact of the watershed algorithm on plant classification 

rate, 12 field images were selected randomly and the modification of feature criteria and 

concavity criteria with pre-flooding up to 252 was applied to the objects.  There was a  

33.3% improvement for occluded tomato cotyledons in classification rate, and 41.1% 

improvement for occluded tomato true leaves.  Some of the occluded leaves in the third 

group of tomato plants might also be benefited from these modifications. 

 

 



 250

5.6 Diurnal changes in plant appearance 

 A study was designed to evaluate varietal effects on cotyledon orientation using 

sixteen tomato varieties.  The results indicate that the cotyledon angle was significantly 

different between two different days (that were 3.5°C different in the maximum daily 

temperature) - qualify the difference between the days at the same time of day, but the 

mean difference was not  practically meaningful. The cotyledon angle of some varieties 

did not change from morning to dusk, but started to close at dusk, becoming completely 

closed at night. The variety effect on cotyledon angle had a lot of variability in the data 

set.  The maximum average daily difference of cotyledon angle among varieties was 

13.7°.  At night, some varieties closed completely, but some didn’t. The maximum 

average difference of cotyledon opening among varieties was 17.3° at 8 PM.  The critical 

angle of recognition was estimated as 27.5° for a tomato cotyledon.  

 

5.7  Recognition of transgenic purple tomato plant 

To overcome some of the difficulties of the leaf morphology recognition 

algorithm in recognizing tomato plants when the leaves are overlapped or are at larger 

growth stage than cotyledons, the feasibility of identifying tomato plants by their color 

alone was investigated using tomato plants with “purple” foliage. This test showed quite 

promising results.  In this test, purple tomato plants were correctly recognized even 

though the tomato plants were growing in the middle of a group of weed plants.  This 

technique of using color alone could make it possible to use a 2-D image in a situation 

where if morphology were used would probably require 3-D imaging.  The whole 



 251

recognition process took 129.69 ms for a field of view of 11.43 cm by 10.16 cm, thus the 

prototype system could travel at speeds up to 3.17 km/hr.  Comparing the current 

conventional cultivating speed (~ 3.2 km/hr) in processing tomato farming, this technique 

is very encouraging as a future weed control method.   

 



 252

6.  RECOMMENDATIONS FOR FUTURE WORK 

 For better recognition of tomato true leaves and the tomato third group, machine 

vision systems need to be able to identify features in a similar way as humans identify 

them.  A person could distinguish tomato plants from weeds perfectly and very easily if 

he/she is trained even for a very short period, regardless of tomato plants being occluded, 

curled, lying down, bigger than cotyledon stage or eaten by insects.   A possible way to 

increase the recognition performance is to incorporate a side view with the top view.  

This option could provide more information about plant characteristics and thus would 

lead to more correct recognition of tomato plants and weeds.  In this research, the images 

were taken from 13 different fields in two years for the recognition of tomato plants and 

weeds, which brought in a  lot of variability in plant shape.  In some sense, the author 

believes that this great variability in plant shape may lower the recognition performance 

of tomato true leaves and the third group.  Thus, it is recommended that it would be better 

to work with a smaller set of images (for example, images taken in one field), even 

though the recognition process would need to be repeated from field to field or for 

different times.  This option would be possible if the feature selection procedure is 

automated. 

  For better displacement sensing, another technique needs to be developed instead 

of using wheel-driven encoders.  For example, Stone and Kranzler (1992) proposed an 

image-based ground speed measuring system using a linear imaging device, which 

showed promising results.  Occlusion of plant leaves is also a significant problem in 

distinguishing tomato leaves in the uncontrolled outdoor environment of an agricultural 



 253

field and an accurate real-time algorithm for separating partially occluded leaves at the 

point of occlusion is needed.   



 254

REFERENCES 

 

Ahmad, I. S., J. F. Reid and M. R. Paulsen.  1996.  Textural feature extraction of 

fungal-damaged soybean images.  ASAE Paper No. 96-3047, St. Joseph, MI, USA. 

Alchanatis, L. and S. W. Searcy. 1995. High speed inspection of carrots with a 

pipelined image processing system. ASAE Paper No. 95-3170, St. Joseph, MI, 

USA. 

Al-Jonobi, A. A. and G. Kranzler.  1994.  Machine vision inspection of date fruits.  

ASAE Paper No. 94-3575, St. Joseph, MI, USA. 

Anderson, N. W. and K. A. Wendorf.  1993.  Analyzing plant images in the HLS color 

space.  ASAE Paper No. 93-3593, St. Joseph, MI, USA. 

Asada, H. and M. Brady.  1986.  The curvature primal sketch.  IEEE Transactions on 

pattern analysis and machine intelligence, PAMI-8(1): 2-14.   

Ballard, D. H. and C. M. Brown. 1982. Computer vision. Englewood Cliffs, NJ, 

Prentice-Hall, Inc. 

Bers, L. 1969. Calculus. Vol. 2. Holt, Rinehart and Winston, Inc. 

Beucher, S. 1998.  Personal communication.  Scientific staff.  Centre de Morphologie 

Math⎯matique, Ecole des Mines, France. 

Beucher, S.  1990.  Segmentation tools in mathematical morphology.  Proc. of SPIE in 

Image algebra and morphological image processing, 1350: 70-84. 

 



 255

Beucher, S. and F. Meyer. 1993. Chapter 12. The morphological approach to 

segmentation: The watershed transformation.  In Mathematical morphology in 

image processing. Edited by Dougherty, E. Marcel Dekker, Inc., New York. 

Bond, W. 1992. Non-chemical approaches to weed control in horticulture. 

Phytoparasitica. Israel journal of plant protection science. 20(Supplement): 77S-

81S. 

Borenstein, J., Everett, H. R. and L. Feng. 1996. Navigating mobile robots. A. K. 

Peters, Ltd., Wellesley, MA.   

Brivot, R. and J. A. Marchant. 1996 Segmentation of plants and weeds for a precision 

crop protection robot using infrared images. IEE Proc.- Vision, Image and Signal 

Process. 143(2):118-124. 

Burks, T. and S. A. Shearer.  1995.  Ground cover classification in row crop images 

using color co-occurrence texture analysis. ASAE Paper No. 95-3569, St. Joseph, 

MI, USA. 

California Weed Conference. 1989. Principles of weed control in California. 2nd. ed. 

Thompson Publication.  

Casasent, D., A. Talukder, W. Cox, H-T. Chang, and D. Weber.  1996.  Detection and 

segmentation of multiple touching product inspection items.  Proc. SPIE in Optics 

in Agriculture, Forestry, and Biological Processing II, 2907: 205-216. 

Cooperative Extension Service. 1995. Non-chemical weed control methods. Bulletin 

1118. The University of Georgia College of Agricultural and Environmental 

Sciences,  Athens. 



 256

Crowe, T. G. and M. J. Delwiche. 1996a. Real-time detection of fruit-Part I: Design 

concepts and development of prototype hardware. Transactions of the ASAE. 39(6): 

2299-2308. 

Crowe, T. G. and M. J. Delwiche. 1996b. Real-time detection of fruit-Part II: An 

algorithm and performance of a prototype system. Transactions of the ASAE. 

39(6): 2309-2317. 

Digabel, H. and C. Lantu⎯joul. 1978.  Iterative algorithms.  Proc. 2nd European Symp. 

Quantitative Analysis of Microstructures in Material Science, Biology and 

Medicine, Caen, France, Oct. 1977, J. L. Chermant, Ed. Stuttgart, West Germany: 

Riederer Verlag, 1978: 85-99.  

Dougherty, E. R. 1993. Mathematical morphology in image processing. Edited by E. R. 

Dougherty. Marcel Dekker, Inc. 

Dougherty, E. R. 1992.  An introduction to morphological image processing.  SPIE, 

Bellingham, Washington, USA. 

Duda, R. O. and P. E. Hart. 1973. Pattern classification and scene analysis. John Wiley 

& Sons. 

Eggleston, P. 1995. Scientific image analysis development tools. Advanced Imaging. 

October: 48-53. 

Felton, W. L., A. F. Doss, P. G. Nash, and K. R. McCloy. 1991. A microprocessor 

controlled technology to selectively spot spray weeds.  Proc. of Symposium on 

automated agriculture for the 21st century.  ASAE: 427-432, St. Joseph, MI, USA. 

Felton, W. L.. and K. R. McCloy.  1992. Spot spraying.  Agricultural Engineering, 

November: 9-12. 



 257

Ferguson, W. and A. Padula. 1994. Economic effects of banning methyl bromide for 

soil fumigation. Resources and Technology Division, Economic Research Service, 

U.S. Department of Agriculture. Agricultural Economic Report Number 677: 1-11.  

Ford, G. 1994. EEC207: Pattern recognition and classification (Lecture Notes). 

Department of Electrical Engineering and Computer Science, University of 

California, Davis. 

Franz, E., M., R. Gebhardt, and K. B. Unklesbay. 1991a. Shape description of 

completely visible and partially occluded leaves for identifying plants in digital 

images. Transactions of the ASAE 34(2):673-681.  

Franz, E., M., R. Gebhardt, and K. B. Unklesbay. 1991b. The use of local spectral 

properties of leaves as an aid for identifying weed seedlings in digital images. 

Transactions of the ASAE 34(2): 682-687.  

Gao, X.,  J. Tan and D. Gerrard.  1995.  Image segmentation in 3-Dimensional color 

space.  ASAE Paper No. 953607, St. Joseph, MI, USA. 

Goldsbrough, A. P., Y. Tong, and J. I. Yoder. 1996.  Lc as a non-destructive visual 

reporter and transposition excision marker gene for tomato.  The Plant Journal, 

9(6): 927-933. 

Gonzalez, R. C. and R. E. Woods. 1993. Digital image processing. Addison-Wesley 

publishing company, Inc. 

Guyer, D. E., G. E. Miles, M. M. Schreiber, O. R. Mitchell, and V. C. Vanderbilt. 

1986. Machine vision and image processing for plant identification. Transactions of 

the ASAE 29(6):1500-1507. 



 258

Haggar, R. J., C. J. Stent, and S. Isaac.  A prototype hand-held patch sprayer for killing 

weeds, activated by spectral differences in crop/weed canopies.  J. Ag. Eng. Res. 

28: 349-358, (1983). 

Haney, L., C. Precetti, and H. Gibson. 1994. Color matching of wood with a real-time 

machine vision system.  ASAE Paper No. 94-3579, St. Joseph, MI, USA. 

Hooper, A. W., G. O. Harries, and B. Ambler. 1976. A photoelectric sensor for 

distinguishing between plant material and soil.  J. Ag. Eng. Res. 21: 145-155. 

Horn, B. K. P. 1992. Robot vision. The MIT Press. 

Horsch, R. B., R. T. Fraley, S. G. Rogers, P. R. Sanders, A. Lloyd, and H. Hoffman. 

1984. Inheritance of functional foreign genes in plants. Science, 223: 496-498. 

Isaac, E. J. and R. C. Singleton.  1956.  Sorting by address calculation.  Journal of the 

association for computing machinery, 3: 169-174.   

Jain, A. K. 1989. Fundamentals of digital image processing. Prentice-Hall, Inc. 

Jia, J., G. W. Krutz, and H. G. Gibson. 1990. Corn plant locating by image processing. 

SPIE Optics in Agriculture 1379:246-253. 

Jiang, C. and R. C. Derksen. 1993.  Morphological image processing for spray 

evaluation.  ASAE Paper No. 933599, St. Joseph, MI, USA.   

Lan, Y., Q. Fang, M. F. Kocher, and M. A. Hanna.  1996.  Detection of fissures in 

grains using machine vision.  ASAE Paper No. 96-3048, St. Joseph, MI, USA. 

Lass, L. W. and R. H. Callihan.  1993.  GPS and GIS for weed surveys and 

management.  Weed technology, 7: 249-254. 



 259

Lee, W. S., D. C. Slaughter, and D. K. Giles. 1997. Robotic weed control system for 

tomatoes using machine vision and precision chemical application.  ASAE Paper 

No. 97-3093, St. Joseph, MI, USA. 

Lester, J. M., H. A. Williams, B. A. Weintraub and J. F. Brenner. 1978.  Two graph 

searching techniques for boundary finding in white blood cell images.  Computers 

in biology and medicine 8(4): 293-308. 

Liao, K., M. R. Paulsen and J. F. Reid. 1994. Real-time detection of colour and surface 

defects of maize kernels using machine vision. J. of Agricultural Engineering 

Research 59(4):263-271. 

Luo, X., D. S. Jayas and N. R. Bulley.  1997.  Identification of damaged kernels in 

wheat using a color machine vision system. ASAE Paper No. 973099, St. Joseph, 

MI, USA. 

Marchant, J. A., C. M. Onyango, and M. J. Street. 1990. Computer vision for potato 

inspection without singulation. Computers and Electronics in Agriculture. 4: pp. 

235-244. 

Matthews, J. 1996. Senate backs farmers’ use of toxic pesticide. The Sacramento Bee. 

Feb. 23: pp. A1, A14. 

Merritt, S. J., G. E. Meyer, K. Von Bargen, and D. A. Mortensen. 1994. Reflectance 

sensor and control system for spot spraying. ASAE Paper No. 94-1057, St. Joseph, 

MI, USA. 

Meyer, F.  1990.  Skeletons and watershed lines in digital spaces.  Proc. of SPIE in 

Image algebra and morphological image processing, 1350: 85-102. 



 260

Meyer, F. and S. Beucher.  1990.  Morphological segmentation.  J. of visual 

communication and image representation, 1(1): 21-46. 

Miller, B. K. and M. J. Delwiche.  1991.  Peach defect detection with machine vision. 

Transactions of the ASAE 34(6): 2588-2597.   

Moltó, E., J. Blasco, N. Aleixos, J. Carrión, and F. Juste.  1997. A machine vision 

system for robotic weeding of row crops. Proc. 5th Int. Symp. Fruit, Nut, and 

Vegetable Production Engineering. Davis, CA., USA. 

Moltó, E., J. Blasco, N. Aleixos, J. Carrión, and F. Juste. 1996. Machine vision 

discrimination of weeds in horticultural crops. AGENG 96. Madrid. Report N. 

96G-037. 

Novini, A. R. 1992.  Fundamentals of machine vision inspection in glass and metal 

container industries. Proceedings of the 1992 Conference, Food Processing 

Automation II.  ASAE, St. Joseph, Michigan.   

O’Gorman, L.  1988.  An analysis of feature detectability from curvature estimation.  

Proceedings of Computer vision and pattern recognition: 235-240. 

Orbert, C. L., E. W. Bengtsson, and B. G. Nordin.  1993. “Watershed segmentation of 

binary images using distance transformations,” in Nonlinear Image Processing IV, 

E. R. Dougherty, J. Astola, H. G. Longbotham, Editors, Proc. SPIE 1902: 159-170. 

Parish, S. 1990. A review of non-chemical weed control techniques. Biological 

Agriculture and Horticulture, 7:117-137. 

Prather, T. S. and R. H. Callihan.  1993.  Weed eradication using geographic 

information systems.  Weed technology, 7: 265-269.   



 261

Précetti, C. J. and G. W. Krutz.  1993.  Building a color classifier.  ASAE Paper No. 

93-3003, St. Joseph, MI, USA. 

Rencher, A. C. 1995. Methods of multivariate analysis. John Wiley & Sons, Inc. 

Russ, J. C.  1990.  Computer-assisted microscopy.  Plenum press, New York: 153-161.  

Sarkar, N. and R. R. Wolfe.  1985.  Feature extraction techniques for sorting tomatoes 

by computer vision.  Transactions of the ASAE 28(3): 970-974, 979. 

SAS Institute Inc. 1993. SAS/STAT User’s Guide. Version. 6, 4th Ed. Vol. 1 & 2. Cary, 

NC.  

Sharp. 1993. Image processing board GPB-2 Manual. Sharp digital information 

products, Inc. 

Shatadal, P., D. S. Jayas, and N. R. Bulley. 1995.  Digital image analysis for software 

separation and classification of touching grains: I. Disconnect algorithm. 

Transactions of the ASAE 38(2): 635-643. 

Shatadal, P., D. S. Jayas, and N. R. Bulley. 1995.  Digital image analysis for software 

separation and classification of touching grains: II. Classification. Transactions of 

the ASAE 38(2): 645-649. 

Shatadal, P., D. S. Jayas, and N. R. Bulley. 1991. Fourier and spatial domain analysis 

of image texture. Automated Agriculture for the 21st Century. Proceedings of the 

National Symposium, Chicago, 16-17 December: pp. 36-41. 

Shearer, S. A. and R. G. Holmes. 1990. Plant identification using color co-occurrence 

matrices. Transactions of the ASAE 33(6): 2037-2044. 

Shearer, S. A. and F. A. Payne. 1990. Color and defect sorting of bell peppers using 

machine vision. Transactions of the ASAE 33(6): 2045-2050. 



 262

Shiraishi, M., and H. Sumiya. 1996.  Plant identification from leaves using quasi-sensor 

fusion. J. of Manufacturing Sci. and Eng., ASME 118: 382-387. 

Slaughter, D. C., P. Chen and R. G. Curley. 1997. Computer vision guidance system 

for precision cultivation. ASAE Paper No. 97-1079, St. Joseph, MI, USA. 

Slaughter, D. C., P. Chen, R. F. Norris and R. G. Curley. 1996. Development of a 

robotic system for a non-chemical weed control. A research proposal submitted to UC 

IPM (University of California Integrated Pest Management) Program. 

Slaughter, D. C., R. Curley, P. Chen, and C. Brooks. 1992. Development of a robotic 

system for non-chemical weed control. Proceeding 44th Annual California Weed 

Conference. Red Lion Hotel, Sacramento, CA. 

Slaughter, D. C. and R. C. Harrell. 1989. Discriminating fruit for robotic harvest using 

color in natural outdoor scenes. Transactions of the ASAE 32(2): 757-763. 

Slaughter, D. C. and R. C. Harrell. 1987.  Color vision in robotic fruit harvesting. 

Transactions of the ASAE 30(4): 1144-1148. 

Soille, P. and L. Vincent.  1990.  Determining watersheds in digital pictures via flooding 

simulations. Proc. of SPIE in Visual communications and image processing ’90, 

1360: 240-250. 

Stafford, J. V., J. M. Le Bars and B. Ambler.  1996.  A hand-held data logger with 

integral GPS for producing weed maps by field walking.  Computers and 

electronics in agriculture, 14: 235-247. 

Stone, M. L. and G. A. Kranzler.  1992.  Image-based ground velocity measurement. 

Transactions of the ASAE 35(5): 1729-1735. 



 263

Tao, Y., C. T. Morrow, P. H. Heinemann, and H. J. Sommer III.  1995.  

Fourier-based separation technique for shape grading of potatoes using machine 

vision. . Transactions of the ASAE 38(3): 949-957. 

Tarbell, K. and J. F. Reid. 1989.  Characterizing corn growth and development using 

computer vision.  ASAE Paper No. 89-7509, St. Joseph, MI, USA. 

Tauzer, C. J. 1995. Development of a target activated offset sprayer using machine 

vision for plant detection. M.S. Thesis. Department of Biological and Agricultural 

Engineering, University of California, Davis. 

Tauzer, C. J., K. Giles, and D. C. Slaughter. 1994. Machine vision control of offset 

highway spraying. ASAE Paper No. 94-1507, St. Joseph, MI, USA. 

Thompson, J. F., J. V. Stafford, and B. Ambler. 1990. Weed detection in cereal crops. 

ASAE Paper No. 907516, St. Joseph, MI, USA. 

Tian, L. 1995. Knowledge based machine vision system for outdoor plant identification. 

Ph.D. dissertation. Department of Biological and Agricultural Engineering. 

University of California, Davis. 

Tian, L., M. Su, and E. Wassink. 1997. Development of a machine-vision controlled 

precision sprayer. ASAE Paper No. 973055, St. Joseph, MI, USA. 

Tian, L. and D. C. Slaughter. 1993. Computer vision identification of tomato seedlings 

in natural outdoor scenes. ASAE Paper No. 93-3608, St. Joseph, MI, USA. 

University of California Statewide Pest Management Project.  1985.  Integrated pest 

management for tomatoes.  Second edition.  Division of agriculture and natural 

resources, Publication 3274. 



 264

USDA and NASS. 1997. Agricultural statistics 1997. United States government printing 

office, Washington D. C.  

USDA, NASS and ERS. 1995. Agricultural chemical usage. Vegetables. 1994 

Summary. United States government printing office, Washington D. C.  

Vincent, L. and P. Soille. 1991. Watersheds in digital space: an efficient algorithm 

based on immersion simulations. IEEE Transactions on Pattern Analysis and 

Machine Intelligence 13(6):583-598. 

Vincent, L. and S. Beucher.  1989.  The morphological approach to segmentation: An 

introduction.  School of Mines, Paris, France, Internal report. CMM. 

Visser, R. and A. J. M. Timmermans. 1996. WEED-IT: a new selective weed control 

system. Proceedings of SPIE, Optics in Agriculture, Forestry, and Biological 

Processing II 2907: 120-129. 

Webster, T. M. and J. Cardina.  1997.  Accuracy of Global Positioning System (GPS) 

for weed mapping.  Weed technology, 11: 782-786.   

Whittaker, A. D., G. E. Miles, O. R. Mitchell, and L. D. Gaultney. 1987. Fruit 

location in a partially occluded image. Transactions of the ASAE. 30(3):591-596. 

Wilson, J. P., W. P. Inskeep, P. P. Rubright, D. Cooksey, J. S. Jacobson, and R. D. 

Snyder.  1993.  Coupling geographic information systems and models for weed 

control and groundwater protection.  Weed technology, 7: 255-264.  

Woebbecke, D. M., G. E. Meyer, K. Von Bargen, and D. A. Mortensen. 1995a. Color 

indices for weed identification under various soil, residue, and lighting conditions. 

Transactions of the ASAE 38(1): 259-269. 



 265

Woebbecke, D. M., G. E. Meyer, K. Von Bargen, and D. A. Mortensen. 1995b. Shape 

features for identifying young weeds using image analysis. Transactions of the 

ASAE 38(1): 271-281.  

Worring, M. and A. W. M. Smeulders.  1993.  Digital curvature estimation.  CVGIP: 

Image understanding, 58(3): 366-382. 

Zhang, N. and C. Chaisattapagon. 1995. Effective criteria for weed identification in 

wheat fields using machine vision. Transactions of the ASAE 38(3): 965-974. 

 

 

 

 



 266

APPENDIX 

Source code 
 
 

(1)  Program to make a LUT (rgblut.c). 

(2)  Program to make HSI pixel data file in ASCII with a computer mouse (hsipixel.c). 

 

 



 267

/***********************************************************************  
*                * 
*   Filename: rgblut.c             * 
*   Author  : Won Suk Lee            * 
*   Date    : November 3, 1995                 * 
*                 * 
************************************************************************
*                * 
*   This program generates LUT with the inputs of red (0-255),      * 
*   green (0-255) and blue (0-255) using Bayesian classifier.      * 
*   The red input is reduced to 5 bits (0-31) and the green input is   * 
*   reduced to 6 bits(0-63), and blue input is reduced to 5 bits(0-31).* 
*   Then, the three inputs are converted into hue, saturation, and     * 
*   intensity. These HSI values are used as an input to Bayesian      * 
*   classifier.              * 
*   This program calculates n possibilities for n classes and compare  * 
*   those. Then if possibility of cotyledon or plant is biggest, the   * 
*   LUT output is 255. Otherwise output is 0 (for background).      * 
*                * 
************************************************************************ 
*  Revision History                  * 
*  Date    Name Description                 * 
*  12/8/97 WSL Added to generate a file of address and r,g,b values.* 
*                 File name is "address.rgb".         * 
***********************************************************************/ 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <process.h> 
#include <errno.h> 
#include <fcntl.h> 
#include <conio.h> 
#include <sys\types.h> 
#include <sys\stat.h> 
#include "gpb2.h" 
#include "elibdef.h" 
#include "errcode2.h" 
#include "windw2.h" 
#include <math.h> 
 
double bayesian(double *x, double *mu, long double *cov, int n); 
double detr(long double *a); 
long double minv(long double *mp, long *l, long *m, long n); 
void diff(double *a, double *b, double *result, int row, int col); 
void transpose(double *a, double *result, int row, int col); 
void multiply(double *a, double *b, double *result, int row, int mid, 

int col); 
double get_max(double a, double b, double c, double d, double e, double 

f, double g); 
 
void main(void) 
{ 
   long double a[3][3], b[3][3]; 
   long double x11,x12,x13,x21,x22,x23,x31,x32,x33; 
   long l[3], m[3]; 
   int ii, jj; 
   int red2, green2, blue2; 
   double x[3][1],p_coty,p_true,p_weed,p_bak1,p_bak2,p_bak3,p_bak4, 

p_max; 
   double mu_coty[3][1],mu_true[3][1],mu_weed[3][1]; 



 268

   double mu_bak1[3][1],mu_bak2[3][1],mu_bak3[3][1],mu_bak4[3][1]; 
   long double cov_coty[3][3],cov_true[3][3],cov_weed[3][3]; 
   long double cov_bak1[3][3],cov_bak2[3][3],cov_bak3[3][3], 

cov_bak4[3][3]; 
   long double cov_cotyx[3][3],cov_truex[3][3],cov_weedx[3][3]; 
   long double cov_bak1x[3][3],cov_bak2x[3][3],cov_bak3x[3][3], 

cov_bak4x[3][3]; 
   long double cov_cotyp[3][3],cov_truep[3][3]; // for purple tomatoes 
   double mu_cotyp[3][1],mu_truep[3][1]; 
   long double cov_cotypx[3][3],cov_truepx[3][3]; 
   double p_cotyp, p_truep; 
   FILE *fout; 
   char file_name[30], in_char; 
   int output; 
   double hue,intensity,saturation,red,green,blue,minrgb,factor; 
   unsigned long address; 
   unsigned char buffer[_FILE_BUFF_SIZE]; /* _FILE_BUFF_SIZE=512 in 
                                              'elibdef.h' */  
   int fp,i,j,status; /* fp = file handle */ 
   INTPTR p;     /* pointer to image file header */ 
  /* INTPTR is a far integer pointer defined in 'windw2.h'*/ 
   int mm,class; 
   unsigned int ihue, isat, iint; 
   double coty, back; 
   FILE *outfptr; 
   double std1, std2, std3;   // std. deviation of HSI of cotyledon 
   double rhm, rhp, rsm, rsp, rim, rip; 
   char addr_file[]={"address.rgb"}; 
   FILE *addr_ptr; 
 
system("cls"); 
 
printf("Would you like to make a new LUT? (y/n)\n"); 
in_char = tolower( getch()); 
if( in_char == 'n') 
   exit(0); 
printf("Enter LUT image file name (*.img) :"); 
scanf("%s", file_name); 
printf("Making LUT ... "); 
 
/* make address file assiciated RGB value combination */ 
if((addr_ptr=fopen(addr_file,"w")) == NULL) 
{ 
    printf("No %s FILE FOUND!\n", addr_file); 
    exit(-1); 
} 
 
 
/* sample initial values for mean and covariance for each class */ 
/**********************************************************************/ 
/* lut516c2.img: For 516.img on 5/16/97 */ 
 
mu_coty[0][0]= 51.87202925; mu_coty[1][0]=  82.79798903; 
mu_coty[2][0]=   114.57952468; 
cov_coty[0][0]=    67.20629547L; cov_coty[0][1]=    18.11771236L; 
cov_coty[0][2]=    31.76784038L; 
cov_coty[1][0]=    18.11771236L; cov_coty[1][1]=   391.35469188L; 
cov_coty[1][2]=  -223.47363973L; 
cov_coty[2][0]=    31.76784038L; cov_coty[2][1]=  -223.47363973L; 
cov_coty[2][2]=   393.90359520L; 



 269

std1=8.19794459; std2=19.78268667; std3=19.84700469; 
 
mu_bak1[0][0]=   27.11690141; mu_bak1[1][0]=  82.47042254; 
mu_bak1[2][0]=   111.79577465; 
cov_bak1[0][0]=    53.46304257L; cov_bak1[0][1]=    51.93223544L; 
cov_bak1[0][2]=    -3.44576770L; 
cov_bak1[1][0]=    51.93223544L; cov_bak1[1][1]=   350.53156400L; 
cov_bak1[1][2]=  -154.11535787L; 
cov_bak1[2][0]=    -3.44576770L; cov_bak1[2][1]=  -154.11535787L; 
cov_bak1[2][2]=   606.32635730L; 
 
/**********************************************************************/ 
 
/* open output image file */ 
if((fp=open(file_name, O_WRONLY|O_CREAT|O_TRUNC, S_IREAD|S_IWRITE))==0) 
{ 
    printf("error creating '%s'\n", file_name); 
    exit(0); 
} 
   /* write header data to image file */ 
   /* _FILE_HEAD_SIZE=128 in 'elibdef.h' */ 
for (i = 0; i < _FILE_HEAD_SIZE; i++) 
    buffer[i] = 0; 
 
buffer[0] = _ID_CHAR; /* _ID_CHAR = 'M' in 'elibdef.h' */ 
p = (INTPTR)(buffer + 1); 
 
*p++ = 0;  /* cols */ 
*p++ = 0;  /* rows */ 
*p++ = 512;  /* width */ 
*p++ = 128;  /* height */ 
*p++ = 8;  /* pixel size 8 bits */ 
*p++ = TO_BOTTOM; /* scan direction is to the bottom, TO_BOTTOM =0 in 

   'elibdef.h' */ 
*p++ = 1;  /* number of planes/banks of data */ 
 
   /* write header data to image file */ 
status = SUCCESS; 
if (write(fp, buffer, _FILE_HEAD_SIZE) == _FILE_HEAD_SIZE) 
{ 
    for (j = 0, address = 0; j < 128; j++) 
    { 
 for (i = 0; i < _FILE_BUFF_SIZE; i++, address++) 
 { 
     red =   (double)(  (((address << 17) >> 31) << 7) 
        | (((address << 20) >> 31) << 6) 
        | (((address << 23) >> 31) << 5) 
        | (((address << 26) >> 31) << 4) 
        | (((address << 29) >> 31) << 3) ); 
     green = (double)(  (((address << 16) >> 31) << 7) 
        | (((address << 19) >> 31) << 6) 
        | (((address << 22) >> 31) << 5) 
        | (((address << 25) >> 31) << 4) 
        | (((address << 28) >> 31) << 3) 
        | (((address << 31) >> 31) << 2) ); 
     blue =  (double)(  (((address << 18) >> 31) << 7) 
        | (((address << 21) >> 31) << 6) 
        | (((address << 24) >> 31) << 5) 
        | (((address << 27) >> 31) << 4) 
        | (((address << 30) >> 31) << 3) ); 



 270

     fprintf(addr_ptr,"%6ld, %7.lf, %7.lf, %7.lf,",\ 
         address, red,green,blue); 
     red = ((int)(red / 8.0)) * 8.0; 
     green = ((int)(green / 4.0)) * 4.0; 
     blue = ((int)(blue / 8.0)) * 8.0; 
 
     /* convert RGB into HSI */ 
   /* intensity rounded */ 
     intensity = ((red + green + blue) / 3.0 * 255.0/249.0) + 0.5; 
 
   /* saturation rounded */ 
     minrgb = min(red, green); 
     minrgb = min(minrgb, blue); 
 
     if (intensity < 16.0) 
  saturation = 0.0; 
     else 
  saturation = (255.0 * (1.0 - (minrgb / intensity))) + 0.5; 
 
   /* hue rounded */ 
     if ((saturation < 16.0) || (intensity < 16.0)) 
  hue = 0.0; 
     else 
     { 
  if (blue > green) 
      factor = 180.0; 
  else 
      factor = 0.0; 
 
  hue = 90.0-(atan((2.0*red-green-blue)/(green- blue+0.01) 
                  /sqrt(3.0)))*(180.0/3.14)+factor+1.5; 
     } 
 
     hue = hue * 255.0/360.0; 
     x[0][0]=(double)((unsigned int)hue); 
     x[1][0]=(double)((unsigned int)saturation); 
     x[2][0]=(double)((unsigned int)intensity); 
 
  for(ii=0; ii<3; ii++) 
     for(jj=0; jj<3; jj++) 
     { 
        /* Feed correct covariance value each time since those 
    values are changed after 'bayesian' function. */ 
        cov_cotyx[ii][jj]=cov_coty[ii][jj]; 
        //cov_truex[ii][jj]=cov_true[ii][jj]; 
        //cov_weedx[ii][jj]=cov_weed[ii][jj]; 
        cov_bak1x[ii][jj]=cov_bak1[ii][jj]; 
        //cov_bak2x[ii][jj]=cov_bak2[ii][jj]; 
        //cov_bak3x[ii][jj]=cov_bak3[ii][jj]; 
        //cov_bak4x[ii][jj]=cov_bak4[ii][jj]; 
     } 
  /* calculate probability of each class */ 
  p_coty=bayesian((double *)x,(double *)mu_coty, 
                       (long double*)cov_cotyx,3); 
  //p_true=bayesian((double *)x,(double *)mu_true, 
       //                (long double *)cov_truex,3); 
  //p_weed=bayesian((double *)x,(double *)mu_weed, 
       //                (long double *)cov_weedx,3); 
  p_bak1=bayesian((double *)x,(double *)mu_bak1, 
                       (long double *)cov_bak1x,3);      



 271

  //p_bak2=bayesian((double *)x,(double *)mu_bak2, 
       //                (long double *)cov_bak2x,3); 
  //p_bak3=bayesian((double *)x,(double *)mu_bak3, 
       //                (long double *)cov_bak3x,3); 
  //p_bak4=bayesian((double *)x,(double *)mu_bak4, 
       //                (long double *)cov_bak4x,3); 
 
  p_max=get_max(p_coty, 0.0, 0.0, p_bak1, 0.0, 0.0, 0.0); 
 
  if((p_max == p_coty)||(p_max == p_weed)) 
  { class=1; output=255;} 
  else 
  { class=2; output=0;} 
 
  if( red==255.0 && green==255.0 && blue==255.0) 
  { class=2; output=0;} 
 
  rhm=mu_coty[0][0]-2.0*std1; rhp=mu_coty[0][0]+2.0*std1; 
  rsm=mu_coty[1][0]-2.0*std2; rsp=mu_coty[1][0]+2.0*std2; 
  rim=mu_coty[2][0]-2.0*std3; rip=mu_coty[2][0]+2.0*std3; 
  if( (x[0][0]<rhm) || (x[0][0]>rhp) || \ 
      (x[1][0]<rsm) || (x[1][0]>rsp) ) 
  { class=2; output=0;} 
 
 
  fprintf(addr_ptr,"%3d\n", output); 
  buffer[i] = (unsigned int)output; 
 } 
 if (write(fp, buffer, _FILE_BUFF_SIZE) != _FILE_BUFF_SIZE) 
 { 
     status = FILE_ERR; 
     break; 
 } 
    } 
} 
else 
    status = FILE_ERR; 
 
close(fp);  /* close lut file */ 
 
if (status == FILE_ERR) /* delete file if error populating */ 
{ 
    unlink(file_name); 
    printf("Error! Lut file is not built.\n"); 
    exit(0); 
} 
else 
    printf("LUT data is stored in '%s'.\a\n", file_name); 
_fcloseall(); 
exit(0); 
} 
    
/*********************************************************************** 
 Function:double bayesian(double *x, double *mu, long double *cov,int n) 
  
 It returns the conditional probability of Bayes' classifier 
 using HSI values, mean and covariance. 
 
 Inputs: 
 x   (3x1) : matrix of hue, sat and int values 



 272

 mu  (3x1) : mean matrix of hue, sat, and int values 
 cov (3x3) : covariance matrix of hue, sat, and int  
 n    : number of rows of matrix  x 
 
***********************************************************************/ 
 
double bayesian(double *x, double *mu, long double *cov, int n) 
{ 
   double p, pi, mdiff[3][1], fcov[3][3], tdiff[1][3]; 
   long l[3], mm[3]; 
   double value, determinant, mult1[1][3], mult2, m, num, den; 
   int i,j; 
   long double det; 
 
pi=3.141592654; 
m=3.0; 
 
determinant=detr(cov); 
den=pow((2.0*pi),(m/2.0)) * sqrt(determinant); 
pow((2.0*pi),(m/2.0)),m,determinant); 
det=minv(cov, l, mm, 3L); 
 
for(i=0; i<n; i++)   // convert cov from long double to double 
   for(j=0; j<n; j++) 
      fcov[i][j] = (double)(*(cov+ i*n + j)); 
 
diff((double *)x,(double *)mu,(double *)mdiff,3,1); 
 
transpose((double *)mdiff,(double *)tdiff,3,1); 
multiply((double *)tdiff,(double *)fcov,(double *)mult1,1,n,n); 
multiply((double *)mult1,(double *)mdiff,&mult2,1,n,1); 
num=exp(-0.5*mult2); 
 
p=num/den; 
return p; 
} 
 
/*********************************************************************** 
 Function : double detr(long double *a) 
  
 Calculates determinant of matrix a (size x size). 
 In this case, size is equal to 3. 
 
***********************************************************************/ 
 
#define mat(name, r, c) (*(name + r*3 + c)) 
double detr(long double *a) 
{ 
   double value; 
 
value=mat(a,0,0)*((mat(a,1,1)*mat(a,2,2))-(mat(a,1,2)*mat(a,2,1)))\ 
      -mat(a,1,0)*((mat(a,0,1)*mat(a,2,2))-(mat(a,0,2)*mat(a,2,1)))\ 
      +mat(a,2,0)*((mat(a,0,1)*mat(a,1,2))-(mat(a,0,2)*mat(a,1,1)));  
 
return value; 
} 
 
/* MINV:C; 50/4 *******************************************************/ 
/* FUNCTION:  Subroutine         
  



 273

     long double minv (mp,l,m,n)      
      
----------------------------------------------------------------------*/ 
/* Special Information:        
 PROGRAM TO INVERT A NxN MATRIX OF RANK N      11/21/86   
   
 ORIGINAL MATRIX IS CORRUPTED - RETURNS ZERO IF ORIGINAL NOT   
 OF RANK N OTHERWISE THE DETERMINANT OF THE ORIGINAL MATRIX    
 IS RETURNED          
 GAUSS-JORDAN METHOD IS USED TO COMPUTE INVERSE */     
   
/* mp is a pointer to a n*n array of doubles containing the   
   original matrix to be inverted. Inverse matrix is returned in mp.  
   l and m are pointers to vectors of length n      
   and are used as scratch working space. */     
    
/*--------------------------------------------------------------------*/ 
/* Author        Creation Date   
/* David Slaughter      11/21/86    
/*--------------------------------------------------------------------*/ 
/* Revision               
   History By    Date        Description           */  
/*--------------------------------------------------------------------*/ 
/* Version                        */ 
/*  1.00     David    11/21/87 Creation   
    1.10     Phil    04/28/87 Update filed with this header  
  
***********************************************************************/ 
 
//#pragma segment Main 
long double minv(mp,l,m,n) 
long double *mp; 
long *l, *m, n; 
{       
  register long i,j,k,h; 
  long double d,bigm,hold; 
 
  d = 1.0; 
  for(k=0L; k<n; k++) 
  {       
    *(l+k) = k;      
    *(m+k) = k; 
    bigm = *(mp + (n*k) + k);     
    for(j=k; j<n; j++)  /* find largest element */ 
    { 
       for(i=k; i<n; i++) 
       if(fabs(bigm) < fabs(*(mp + (i*n) + j))) 
       {  
   bigm = *(mp + (i*n) + j);  
   *(l+k) = i;  
   *(m+k) = j;     
       } 
    } 
    if(*(l+k) > k)  /* interchange rows */ 
    { 
       h = *(l+k); 
       for(j=0L; j<n; j++) 
       {           
   hold = -*(mp + (k*n) + j); 
   *(mp + (k*n) + j) = *(mp + (h*n) + j); 



 274

   *(mp + (h*n) + j) = hold;  
       } 
    } 
    if(*(m+k)  >  k)  /* interchange c0Lumns */ 
    {        
       h = *(m+k); 
       for(i=0L; i<n; i++) 
       {         
     i *= n; 
     hold = -*(mp+i+k); 
     *(mp+i+k)  =  *(mp+i+h); 
     *(mp+i+h)  =  hold;  
     i /= n;     
       } 
    } 
    if(bigm == 0.0) return (bigm);    /* matrix is SINGULAR */ 
    for(i=0L; i<n; i++)    /* divide c0Lumn by minus pivot (bigm)*/ 
      if(i != k) *(mp + (i*n) + k) /= -bigm; 
    for(i=0L; i<n; i++)        /* reduce matrix */ 
    { 
       hold = *(mp + (i*n) + k); 
       for(j=0L; j<n; j++) 
   if((i!=k) && (j!=k))  
  *(mp + (i*n) + j) = (*(mp+(k*n)+j)*hold) + *(mp+(i*n)+j); 
    } 
    for(j=0L; j<n; j++)        /* divide row by pivot */ 
       if (j!=k)  *(mp + (k*n) + j) /= bigm; 
    d *= bigm;         /* product of pivots */ 
    *(mp + (k*n) + k) = 1.0/bigm;   /* replace pivot by reciprocal */ 
  } 
  for(k=n-2l; k>-1l; k--)     /* final row and c0Lumn interchange */ 
  { 
     if( *(l+k) > k) 
     { 
   h = *(l+k); 
   for(i=0L; i<n; i++) 
   {  
  i *= n; 
  hold = *(mp+i+k);  
  *(mp+i+k) = -*(mp+i+h);   
  *(mp+i+h) = hold;  
  i /= n; 
    } 
     } 
     if( *(m+k) > k) 
     { 
   h = *(m+k); 
   for(j=0L; j<n; j++) 
   { 
  hold = *(mp + (k*n) + j);   
  *(mp + (k*n) + j)  = -*(mp + (h*n) + j);   
  *(mp + (h*n) + j)  =  hold;  
   } 
     } 
  } 
return(d); 
} 
/*********************************************************************** 
 Function : void diff(double *a, double *b, double *result, int row,  
                      int col) 



 275

 
 Input:  matrix a (rowxcol) 
    matrix b (rowxcol) 
 
 Output: matrix result (rowxcol) 
 
***********************************************************************/ 
 
#define matrix(name, r, c) (*(name + r*col + c)) 
void diff(double *a, double *b, double *result, int row, int col) 
{ 
   int i,j; 
     
   for(i=0; i<row; i++) 
   for(j=0; j<col; j++) 
      matrix(result,i,j) = matrix(a,i,j) - matrix(b,i,j);  
} 
 
/*********************************************************************** 
 Function : void transpose(double *a, double *result, int row, int col) 
  
 It returns transpose matrix of the original matrix. 
 Input : matrix a (3x1) 
 Output: matrix result (1x3) 
  
***********************************************************************/ 
 
void transpose(double *a, double *result, int row, int col) 
{ 
   int i,j; 
      
   for(i=0; i<row; i++) 
   for(j=0; j<col; j++) 
      (*(result+ j*row +i)) = (*(a+ i*col + j));  
 
} 
 
/*********************************************************************** 
 Function : void multiply(double *a,double *b,double *result,int row, 
                          int mid,int col) 
  It returns multiplication of the two input matrices.  
  
 Inputs: 
 a (rowxmid) : input matrix 
 b (midxcol) : input matrix 
 
 Output: reslut (rowxcol) 
  
***********************************************************************/ 
 
void multiply(double *a, double *b, double *result, int row, int mid, 

  int col) 
{ 
   int i,j,k; 
   double sum=0.; 
     
for(i=0; i<row; i++) 
   { 
      for(j=0; j<col; j++) 
      { 



 276

  for(k=0; k<mid; k++) 
  { 
     sum += (*(a+ i*mid + k)) * (*(b+ k*col +j)); 
  }  
  (*(result + i*col +j)) = sum; 
  sum=0.; 
      } 
   } 
} 
  
  
/*********************************************************************** 
 Function : double get_max(p1,p2,p3,p4,p5,p6,p7) 
  
 It returns maximum value among 7 inputs (p1 - p7). 
  
***********************************************************************/ 
 
double get_max(double p1,double p2,double p3,double p4,double p5,double 
p6,double p7) 
{ 
   double max1,max2,max3,max4,max5,max6; 
    
   max1=__max(p1,p2); 
   max2=__max(p3,max1); 
   max3=__max(p4,max2); 
   max4=__max(p5,max3); 
   max5=__max(p6,max4); 
   max6=__max(p7,max5); 
    
   return max6; 
}  
 
 
 
/***************************  E * N * D  ******************************/ 
 



 277

/*********************************************************************** 
*                                                                      * 
* Filename: hsipixel.c                                                * 
* Author  : Won Suk Lee                                                * 
* Date    : October 25, 1995                                           * 
*                   * 
* Description: This program loads color images from the hard disk and  * 
*              converts them into HSI using the AUXLUT in 4 quadrants. * 
*              Then, pixel values for HUE, SAT and INT are obtained by * 
*              drawing a box in the color image with a mouse.          * 
*              Those HUE, SAT and INT pixel values are stored in       * 
*              filename+H.asc, filename+S.asc, and filename+I.asc,     * 
*              respectively.                                           * 
*                 * 
************************************************************************ 
* Revision History                  * 
* Date      Name  Description                 * 
* 5/30/96   WSL   added for-loop for multiple images.                  * 
* 7/25/96   WSL   added image size checking and subsampling routine    * 
* 10/3/96   WSL   modified to use this program for different length of * 
*                 image file names. (Before it worked with only 3      * 
*                 common char.)                                        * 
* 7/7/97    WSL   Fixed error for null-pointer assignment ('inf_ptr'   * 
*                 was problem) and restoring graphics mode after       * 
*                 finishing program.                                   * 
***********************************************************************/ 
 
#include <conio.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <graph.h> 
#include <time.h> 
#include "gpb2.h" 
#include "windw2.h" 
#include <dos.h> 
#include <math.h> 
#include <string.h> 
#include <memory.h>  
#include <process.h> 
#include <errno.h>   
#include <sys\types.h> 
#include <sys\stat.h> 
 
#define P1 1 
#define P2 2 
#define P3 3 
#define B1 1 
#define B2 2 
#define B3 3 
#define B4 4 
 
short old_mode;   /* old video mode */ 
int getpixel(char *file_name, int *common); 
 
main( argc, argv) 
int argc; 
char **argv; 
{ 
int status, i; 
char in_char, file_name[30], ch; 



 278

int wait_sec, stop_flag;  /* run-time parameter flags */ 
struct videoconfig vc;   /* video configuration */ 
short rows, save_mode;   /* number of text rows */ 
short s_mon_color;   /* color index for single monitor */ 
int vga; 
int pb[] = {0,1,0, 0,1,0, 0,1,0, 0,1}; /* parameter block */ 
FILE *image_ptr;   /* image file pointer */ 
int x1, x2, y1, y2;  /* pixel location */ 
int xx;     /* number of files */ 
struct _stat filestat; 
int common;  /* number of common characters in image file name */ 
/* initialize defaults */ 
stop_flag = TRUE;             /* wait for carriage return */ 
wait_sec = 4;        /* number of seconds to wait */ 
s_mon_color = 13; 
 
/* process command line arguments */ 
argv++; argc--; 
while( argc > 0) 
    { 
    if( strcmp( "/s", *argv) == 0) 
 {  /* set single monitor color */ 
 argv++; argc--; 
 if( argc > 0 ) 
     { 
     s_mon_color = atoi( *argv); 
     argv++; argc--; 
     } 
 } 
    else if( strcmp( "/t", *argv) == 0) 
 {  /* set wait time interval */ 
 argv++; argc--; 
 stop_flag = FALSE; 
 if( argc > 0 ) 
     { 
     wait_sec = atoi( *argv); 
     argv++; argc--; 
     } 
 } 
    else 
 { 
 printf("Unknown flag: %s\n", *argv); 
 exit(0); 
 } 
    } 
 
/* initialize GPB */ 
s_gpbinit(0); 
s_clearall(); 
printf("Enter NUMBER of common character in filename: "); 
scanf("%d", &common); 
 
/* initialize graphics */ 
_getvideoconfig( &vc); 
old_mode = vc.mode; 
 
for(xx=0; xx<3000; xx++) 
{ 
/* get input image file */ 
s_gpbroi( 0, 0, 0, 0, 512, 480); 



 279

system("cls"); 
printf("Enter RGB image file name (Enter 999 to exit): "); 
scanf("%s", file_name); 
 
/* initialize graphics */ 
_getvideoconfig( &vc); 
save_mode = vc.mode; 
vga = TRUE; 
rows = _setvideomode( _VRES16COLOR); 
if( rows == 0) 
{ 
    rows = _setvideomode( save_mode); 
    printf("Can't run in single monitor mode\n"); 
    vga = FALSE; 
} 
if( vga) 
{ 
    _settextcolor( 14);       /* text color is light yellow */ 
    _remappalette( s_mon_color, _BLACK);/* for single monitor display */ 
    _setcolor( s_mon_color); 
    _rectangle( _GFILLINTERIOR, 0,0, 639,479); 
    _setbkcolor( _BLUE);      /* background color is blue */ 
} 
if(file_name[0] == '9') 
{ 
   _setvideomode( old_mode); 
    exit(0); 
} 
/* Get file statistics. */ 
if( _stat(file_name, &filestat) != 0) 
   printf( "Error in getting file size!\n"); 
if((image_ptr=fopen(file_name, "r")) == NULL) 
{ 
   printf("No %s file found! Press any key to exit.\n", file_name); 
   getch(); 
   _setvideomode( old_mode); 
   exit(0); 
} 
else 
{ 
   /* load color image */ 
   s_gpbroi(0,0,0,0,256,240); 
   if(s_loadcimg(file_name, P2,B1,P2,B2,P2,B3, FALSE) != SUCCESS) 
   { 
       printf("Error in loading %s image!\n", file_name); 
       _setvideomode( old_mode); 
       exit(0); 
   } 
   if (filestat.st_size > 200000) /* 512 x 480 */ 
   { 
  s_gpbroi(0,0,0,0,512,480); 
  s_loadcimg(file_name, P1,B2,P1,B3,P1,B1, FALSE); 
  if((status=s_reduce( P1,B2, P2,B1, 0,0,0, P3,B4, 2,2))!= SUCCESS) 
      printf("Error in reducing RED\n");       // subsampling 
  if((status=s_reduce( P1,B3, P2,B2, 0,0,0, P3,B4, 2,2))!= SUCCESS) 
      printf("Error in reducing GREEN\n"); 
  if((status=s_reduce( P1,B1, P2,B3, 0,0,0, P3,B4, 2,2))!= SUCCESS) 
      printf("Error in reducing BLUE\n"); 
   } 
} 



 280

fclose(image_ptr); 
 
/* initialize auxlut */ 
s_gpbroi( 0, 0, 0, 0, 512, 128); 
if((status = s_ldauxlt( "rgbhue.img", 0, AUX_LDRD_LUT1B2)) != SUCCESS) 
    {printf("error: %d ldauxlt -- rgbhue.img", status);  exit(0);} 
if((status = s_cpyauxlt( P3,B3, AUX_READ_LUT1)) != SUCCESS) 
    {printf("error: %d cpyauxlt read -- Hue", status); exit(0);} 
if((status = s_ldauxlt( "rgbsat.img", 0, AUX_LDRD_LUT2B2)) != SUCCESS) 
    {printf("error: %d ldauxlt -- rgbsat.img", status); exit(0);} 
if((status = s_cpyauxlt( P3,B1, AUX_READ_LUT2)) != SUCCESS) 
    {printf("error: %d cpyauxlt read -- Sat", status); exit(0);} 
if((status = s_ldauxlt( "rgbint.img", 0, AUX_LDRD_LUT2B2)) != SUCCESS) 
    {printf("error: %d ldauxlt -- rgbint.img", status); exit(0);} 
if((status = s_cpyauxlt( P3,B2, AUX_READ_LUT2)) != SUCCESS) 
    {printf("error: %d cpyauxlt read -- Int", status); exit(0);} 
_settextposition( 1, 19);     _outtext(" Red-Green-Blue "); 
_settextposition( 1, 56);     _outtext(" Hue "); 
_settextposition( rows/2+1, 21);    _outtext(" Saturation "); 
_settextposition( rows/2+1, 53);    _outtext(" Intensity "); 
if( stop_flag) 
{ 
    _settextposition( rows, 1); 
    _outtext("Press any key to continue"); 
} 
 
    /* display buffers as red, green, blue respectively */ 
    s_gpbroi( 0, 0, 0, 0, 256, 240); 
    s_coldisp( P2,B1, P2,B2, P2,B3); 
    s_gpbdelay( 15);      /* wait for display */ 
 
    /* do conversion to Hue */ 
    s_gpbroi( 0, 0, 0, 0, 256, 240); 
    if((status=s_rgbauxlt(P2,B1, P2,B2, P2,B3, AUX_RGBLUT1)) != SUCCESS) 
 {printf("error: %d rgbauxlt -- LUT1", status); exit(0);} 
    if((status=s_thrucpy(0, AUXLUT, P2,B4, 0,0, 0,0, 0,0,0)) != SUCCESS) 
 {printf("error: %d thrucpy -- LUT1", status); exit(0);} 
 
    /* display Hue */ 
    s_gpbroi( 0, 0, 0, 0, 256, 240); 
    s_thrucpy( P2,B4, P1,B1, 0,0, 0,0, 0,0,0); 
    s_gpbroi( 0, 0, 256, 0, 256, 240); 
    s_disp( P1, B1, 'X'); 
    s_gpbdelay(15);      /* wait for display */ 
 
    /* do conversion to Sat */ 
    s_gpbroi( 0, 0, 0, 0, 512, 128); 
    if((status = s_cpyauxlt( P3,B1, AUX_LOAD_LUT2)) != SUCCESS) 
 {printf("error: %d cpyauxlt -- Sat", status); exit(0);} 
    s_gpbroi( 0, 0, 0, 0, 256, 240); 
    if((status=s_rgbauxlt(P2,B1, P2,B2, P2,B3, AUX_RGBLUT2)) != SUCCESS) 
 {printf("error: %d rgbauxlt -- LUT2", status); exit(0);} 
    if((status=s_thrucpy(0, AUXLUT, P2,B4, 0,0, 0,0, 0,0,0)) != SUCCESS) 
 {printf("error: %d thrucpy -- LUT2", status); exit(0);} 
 
    /* display Sat */ 
    s_gpbroi( 0, 0, 0, 0, 256, 240); 
    s_thrucpy( P2,B4, P1,B2, 0,0, 0,0, 0,0,0); 
    s_gpbroi( 0, 0, 0, 240, 256, 240); 
    s_disp( P1, B2, 'X'); 



 281

    s_gpbdelay( 15);      /* wait for display */ 
 
    /* do conversion to Int */ 
    s_gpbroi( 0, 0, 0, 0, 512, 128); 
    if((status=s_cpyauxlt(P3,B2, AUX_LOAD_LUT2)) != SUCCESS) 
 {printf("error: %d cpyauxlt -- Int", status); exit(0);} 
    s_gpbroi( 0, 0, 0, 0, 256, 240); 
    if((status=s_rgbauxlt(P2,B1, P2,B2, P2,B3, AUX_RGBLUT2)) != SUCCESS) 
 {printf("error: %d rgbauxlt -- LUT2", status); exit(0);} 
    if((status=s_thrucpy(0, AUXLUT, P2,B4, 0,0, 0,0, 0,0,0)) != SUCCESS) 
 {printf("error: %d thrucpy -- LUT2", status); exit(0);} 
 
    /* display Int */ 
    s_gpbroi( 0, 0, 0, 0, 256, 240); 
    s_thrucpy( P2,B4, P1,B3, 0,0, 0,0, 0,0,0); 
    s_gpbroi( 0, 0, 256, 240, 256, 240); 
    s_disp( P1, B3, 'X'); 
    s_gpbdelay( 15);      /* wait for display */ 
 
getpixel(file_name, &common);    // get pixel values 
} // end of xx loop 
_setvideomode( old_mode); 
exit(0); 
}  // END OF MAIN 
 
/**********************************************************************/ 
    pixelbx1.c     (ROI=1/4) 
 
 This program prompts for an image file in the hard disk to be displayed  
 and then allows the mouse to be used to read pixel locations and values 
 in that image by drawing a bounding box. Then, it stores the pixel 
 value in the output  file as an ASCII. 
/**********************************************************************/ 
/*  The following is used for mouse control via MS-DOS Interrupt 0x33: * 
*                          * 
* #include <dos.h>                       * 
* union REGS iReg, oReg;                 * 
* iReg.x.ax = number of function to be called;        * 
* iReg.x.bx = value of second parameter;         * 
* iReg.x.cx = value of third parameter;         * 
* iReg.x.dx = value of fourth parameter;         * 
* int86( 0x33, &iReg, &oReg);                * 
* oReg.x.ax, oReg.x.bx, oReg.x.cx, oReg.x.dx contain return values * 
*                          * 
*   Information on additional mouse functions can be found in:      * 
*   "Microsoft Mouse Programmer's Reference", Microsoft Press, 1991.   * 
***********************************************************************/ 
 
int getpixel(char *file_name, int *num) 
{ 
    char response[10], buffer[82]; 
    struct videoconfig vc; /* video configuration */ 
    short save_mode;  /* old video mode */ 
    short rows;   /* number of text rows */ 
    short s_mon_color;  /* color index for single monitor */ 
    union REGS iReg, oReg; /* for mouse control */ 
    int x1, x2, y1, y2;  /* pixel location */ 
    int ival;   /* pixel value */ 
    int hue_plane, hue_bank; /* hue plane & bank number */ 
    int sat_plane, sat_bank; /* sat plane & bank number */ 



 282

    int int_plane, int_bank; /* int plane & bank number */ 
    char *gets(); 
    /* pointer to input image file & output pixel value file */ 
    FILE *inf_ptr,*huef_ptr,*satf_ptr,*intf_ptr;  
    char out_name[30], color_img[30], in_char; 
    char hue_name[30], sat_name[30], int_name[30]; 
    int flag, i, j, m, n, k, l;     // flag for drawing box 
    /* pixel buffer */ 
    unsigned char hue_pixel[10000],sat_pixel[10000],int_pixel[10000]; 
    int *hueptr, *satptr, *intptr, no_pixel;// pointers to pixel buffer 
    int width, height; // width & height of ROI 
    int release;  // no. of mouse button relesae 
    int index;  // no. of data point in a line on data file 
    int sourcex,sourcey, destx, desty; // ROI source(x,y) & dest(x,y) 
    unsigned long sum; 
    const char *ch; 
    int common; 
 
/* initialize default values */ 
s_mon_color=13; 
flag=0; 
hueptr=(int *)hue_pixel; 
satptr=(int *)sat_pixel; 
intptr=(int *)int_pixel; 
release=sum=index=0; 
common=*num; 
 
/* initialize graphics */ 
_getvideoconfig( &vc); 
   /* set high resolution video mode for mouse control 
      resolution (need 512x480) & single monitor mode */ 
rows = _setvideomode( _VRES16COLOR); 
if(rows == 0) 
{ 
    rows = _setvideomode( save_mode); 
    printf("Can't run in single monitor mode\n"); 
} 
_settextcolor( 14);    /* text color is light yellow */ 
_remappalette( s_mon_color, _BLACK); /* for single monitor display */ 
_setcolor( s_mon_color); 
_rectangle( _GFILLINTERIOR, 0,0, 639,479); 
_setbkcolor( _BLUE);   /* background color is blue */ 
 
_settextposition( rows, 1); 
_outtext("Press any key to continue"); 
_settextposition( 1, 1); 
sprintf(buffer, "Press and drag left mouse button for pixel value\n"); 
_outtext(buffer); 
 
/* make an output file name as "dem*." */ 
 n=strlen(file_name);  // counts no. of characters in file name 
 m=n-4;      // 4 means 4 char for (.img) 
 l=n-(common+4);      // only number portion of filename 
 printf("common=%d\n", common); 
      // initialize character buffers 
 for(k=0; k<=(m-l); k++) 
 { 
     hue_name[k]=' '; 
     sat_name[k]=' '; 
     int_name[k]=' '; 



 283

 
     if(k==(m-l)) 
     { 
        hue_name[k]='\0'; 
        sat_name[k]='\0'; 
        int_name[k]='\0'; 
     } 
 } 
 
 // copies first (m-l) character to hue_name from file_name 
 memcpy(hue_name, file_name,m-l);  /* name -> tom, tom, tom */ 
 memcpy(sat_name, file_name,m-l); 
 memcpy(int_name, file_name,m-l); 
 
 strcat(hue_name, "h" );      /* name -> tomh, toms, tomi */ 
 strcat(sat_name, "s" ); 
 strcat(int_name, "i" ); 
  
 for(k=common; k<(l+common); k++) 
 { 
    ch=&file_name[k]; 
    strncat(hue_name, ch, 1);    /* name -> tomh#, toms#, tomi# */ 
    strncat(sat_name, ch, 1); 
    strncat(int_name, ch, 1); 
 } 
 _settextposition( 3, 1); 
 sprintf(buffer, "Pixel data will be saved in %s (HUE 
                       transformed),\n", hue_name); 
 _outtext(buffer); 
 _settextposition( 4, 1); 
 sprintf(buffer, "                            %s (SAT  
                       transformed),\n", sat_name); 
 _outtext(buffer); 
 _settextposition( 5, 1); 
 sprintf(buffer, "                        and %s (INT transformed), 
                       respectively.\n", int_name); 
 _outtext(buffer); 
 _settextposition( 7, 1); 
 sprintf(buffer, " Execution status : %s", file_name); 
 _outtext(buffer); 
 _settextwindow( 8, 1, rows-3, 80); 
 _settextposition( 1, 1); 
 
 
/* File did not exist. Create it for writing. */ 
if( (huef_ptr = fopen( hue_name, "w" )) == NULL ) 
{ 
    printf("File creation error!\n"); 
    exit( 0 ); 
} 
if( (satf_ptr = fopen( sat_name, "w" )) == NULL ) 
{ 
    printf("File creation error!\n"); 
    exit( 0 ); 
} 
if( (intf_ptr = fopen( int_name, "w" )) == NULL ) 
{ 
    printf("File creation error!\n"); 
    exit( 0 ); 
} 



 284

 
/* arrange values for cursor and mouse */ 
s_selcur( 2);   /* select cursor type */ 
s_clrdisp( 'X'); 
iReg.x.ax = 0;   /* mouse reset & status */ 
int86( 0x33, &iReg, &oReg); 
if( oReg.x.ax != -1) 
    printf("Mouse hardware and/or software is not installed 
properly.\n"); 
iReg.x.ax = 7;   /* set horizontal mouse range */ 
iReg.x.cx = 0;   /* left */ 
iReg.x.dx = 256;        /* right */ 
int86( 0x33, &iReg, &oReg); 
iReg.x.ax = 8;   /* set vertical mouse range */ 
iReg.x.cx = 0;   /* top */ 
iReg.x.dx = 240;        /* bottom */ 
int86( 0x33, &iReg, &oReg); 
iReg.x.ax = 15;         /* change mouse speed */ 
iReg.x.cx = 8;   /* horizontal mickeys/pixel (default=8) */ 
iReg.x.dx = 8;   /* vertical mickeys/pixel (default=16) */ 
int86( 0x33, &iReg, &oReg); 
hue_plane=P1; hue_bank =B1; 
sat_plane=P1; sat_bank =B2; 
int_plane=P1; int_bank =B3; 
 
/* main loop */ 
while(1) 
    {    /* display image */ 
    /* display buffers as red, green, blue respectively */ 
    s_gpbroi( 0, 0, 0, 0, 256, 240); 
    s_coldisp( P2,B1, P2,B2, P2,B3); 
    s_gpbdelay( 10);    /* wait for display */ 
 
    s_gpbroi(0,0,256,0,256,240);  /* display HUE */ 
    s_disp( hue_plane, hue_bank, 'X'); 
    s_gpbdelay( 10); 
     
    s_gpbroi(0,0,0,240,256,240);       /* display SAT */ 
    s_disp( sat_plane, sat_bank, 'X'); 
    s_gpbdelay( 10); 
        
    s_gpbroi(0,0,256,240,256,240);        /* display INT */ 
    s_disp( int_plane, int_bank, 'X'); 
    s_gpbdelay( 10); 
    // restore ROI 
    s_gpbroi(0,0,0,0,256,240); 
    if( kbhit())  /* exit -- cleanup before leaving */ 
 { 
 getch(); 
 fclose(huef_ptr);  // close output file 
 fclose(satf_ptr); 
 fclose(intf_ptr);   
 sprintf( buffer, "\nTotal pixel=%ld. Press any key to  
                          continue...\n", sum); 
 _outtext( buffer); 
 getch(); 
 iReg.x.ax = 0;   /* mouse reset & status */ 
 int86( 0x33, &iReg, &oReg); 
 _setvideomode( old_mode); /* reset video mode */ 
 s_selcur( 0);   /* turn off cursor */ 



 285

 return TRUE; 
 } 
    iReg.x.ax = 3; /* determine mouse position & button state */ 
    int86( 0x33, &iReg, &oReg); 
    x1 = oReg.x.cx; y1 = oReg.x.dx; 
    switch( oReg.x.bx) 
    { 
 case 0:   /* neither button pressed */ 
      break; 
 case 1:   /* left button pressed */ 
        release = 0; 
        while(release == 0) 
        {  
    iReg.x.ax=3;/* determine mouse position & button state */ 
    int86( 0x33, &iReg, &oReg); 
    x2 = oReg.x.cx; y2 = oReg.x.dx; 
    s_putcur(x2, y2);  // update cursor 
    iReg.x.ax = 6; /* get button release information */ 
    iReg.x.bx = 0;  /* for left button */ 
    int86( 0x33, &iReg, &oReg); 
    if(oReg.x.bx == 1) 
       release=1; 
    x2 = oReg.x.cx; y2 = oReg.x.dx; // get mouse position 
        } 
 
        if(x2 >= x1)  
        { 
    sourcex=x1; 
    destx=x2; 
        } 
        else 
        { 
    sourcex=x2; 
    destx=x1; 
        }    
        if(y2 >= y1)  
        { 
    sourcey=y1; 
    desty=y2; 
        } 
        else 
        { 
    sourcey=y2; 
    desty=y1; 
        }    
         
        // #5 if 
        if( release > 0)   
        {     
    // #4 if   /* corrected on 10/25/95 */ 
              if(s_bboxroi(P2,B1,'B',sourcex,sourcey,destx,desty,255)  
                              == SUCCESS) 
              {    
                 s_bboxroi(hue_plane,hue_bank,'B',sourcex,sourcey,  
                             destx,desty,255); 
                 s_bboxroi(sat_plane,sat_bank,'B',sourcex,sourcey, 
                             destx,desty,255); 
                 s_bboxroi(int_plane,int_bank,'B',sourcex,sourcey, 
                             destx,desty,255); 
       width=abs(x1-x2)-2; height=abs(y1-y2)-2; 



 286

       sprintf(buffer, "width*height= %d\n", width*height); 
       _outtext(buffer); 
       // #3 if    /* corrected 10/25/95 */ 
       if( (width*height) > 11000) 
       {  
   sprintf( buffer, "\nROI is too big.(Width=%5d, 
                           Height=%5d)\n", width,height); 
   _outtext( buffer); 
   sprintf( buffer, "Total pixel=%ld. Press any key to 
                           continue...\n", sum); 
   _outtext( buffer); 
   //fclose(inf_ptr); // close input file 
   fclose(huef_ptr);  // close output file 
   fclose(satf_ptr); 
   fclose(intf_ptr);   
   iReg.x.ax = 0;  /* mouse reset & status */ 
   int86( 0x33, &iReg, &oReg); 
   getch(); 
   _setvideomode( old_mode); /* reset video mode */ 
   s_selcur( 0);   /* turn off cursor */ 
   return TRUE; 
       } 
       // #3 else 
       else 
       { 
   // #2 if   /* corrected 10/25/95 */ 
   if(s_gpbroi(sourcex+1,sourcey+1,0,0,width,height) == 
                     SUCCESS) 
   { 
      //#1 if 
      if( width > 2 && height > 0) 
      { 
         s_getpxblk(hue_plane, hue_bank, hueptr, 0); 
         s_getpxblk(sat_plane, sat_bank, satptr, 0); 
         s_getpxblk(int_plane, int_bank, intptr, 0); 
         no_pixel=width*height; // no. of pixels  
         sum += no_pixel;  /* corrected 10/25/95 */ 
         sprintf(buffer, "ROI:source(%3d,%3d) -> 
                           dest(%3d,%3d): width=%3d, height=%3d\n",\ 
       sourcex+1,sourcey+1,destx-1,desty-1,width,  
                           height); 
         _outtext( buffer);      
         for(i=0; i<no_pixel; i++) 
         {  
     fprintf(huef_ptr, "%4d\n",(int)hue_pixel[i]); 
     fprintf(satf_ptr, "%4d\n",(int)sat_pixel[i]); 
     fprintf(intf_ptr, "%4d\n",(int)int_pixel[i]); 
        //  if((int)hue_pixel[i]==0)  printf("\a"); 
         } 
         sprintf( buffer, "Getting pixel value 
                                          completed.\n"); 
         _outtext( buffer); 
      } 
      // #1 else 
      else 
      { 
         sprintf( buffer, "\nROI selected 
                                            inappropriately.\n"); 
         _outtext( buffer); 
      } 



 287

   } 
   // #2 else 
   else 
   { 
      sprintf( buffer, "\nGPB ROI Error!\n"); 
      _outtext( buffer); 
      sprintf( buffer, "Total pixel=%ld. Press any key to 
                                       continue...\n", sum); 
      _outtext( buffer); 
      //fclose(inf_ptr);  // close input file 
      fclose(huef_ptr);  // close output file 
      fclose(satf_ptr); 
      fclose(intf_ptr);   
      iReg.x.ax = 0;  /* mouse reset & status */ 
      int86( 0x33, &iReg, &oReg); 
      getch(); 
      _setvideomode( old_mode); /* reset video mode */ 
      s_selcur( 0);   /* turn off cursor */ 
      return TRUE; 
   } 
       } 
    }    
    // #4 else 
    else        
    { 
       sprintf( buffer, "\nFailed to draw a bounding box!\n"); 
       _outtext( buffer); 
       sprintf( buffer, "Total pixel=%ld. Press any key to 
                                   continue...\n", sum); 
       _outtext( buffer); 
    } 
        } 
        // #5 else 
        else        
        { 
    sprintf( buffer, "Mouse function 6 error.\n"); 
    _outtext( buffer); 
 
        } 
        break; 
 case 2:  /* right button pressed */ 
   break; 
 case 3:   /* both buttons pressed */ 
    break; 
 default:  /* unexpected number of buttons pressed */ 
    break; 
 } // end of switch 
 
    s_gpbroi(0,0, 0,0, 256,240); // restore gpbroi 
 
    /* update cursor position */ 
    x1 = oReg.x.cx; y1 = oReg.x.dx; 
    s_putcur( x1, y1); 
    } 
return TRUE; 
} 
 
/***************************  E * N * D  ******************************/ 
 
 




