Efficient & Secured Way of Data Transmission Through Image

ABSTRACT

Steganography is the art of hiding the fact that communication is taking place, by hiding information in other information. Many different carrier file formats can be used, but digital images are the most popular because of their frequency on the Internet. For hiding secret information in images, there exist a large variety of steganographic techniques some are more complex than others and all of them have respective strong and weak points. Different applications have different requirements of the steganography technique used. For example, some applications may require absolute invisibility of the secret information, while others require a larger secret message to be hidden. This paper intends to give an overview of image steganography, its uses and techniques. It also attempts to identify the requirements of a good steganographic algorithm and briefly reflects on which steganographic techniques are more suitable for which applications.

Steganography differs from cryptography in the sense that where cryptography focuses on keeping the contents of a message secret, steganography focuses on keeping the existence of a message secret .Steganography and cryptography are both ways to protect information from unwanted parties but neither technology alone is perfect and can be compromised. Once the presence of hidden information is revealed or even suspected, the purpose of steganography is partly defeated. The strength of steganography can thus be amplified by combining it with cryptography. Two other technologies that are closely related to steganography are watermarking and fingerprinting.

INTRODUCTION

Since the revolution of the Internet one of the most important factors of information technology and communication has been the security of information. Cryptography was created as a technique for securing the secrecy of communication and many different methods have been developed to encrypt and decrypt data in order to keep the message secret. Unfortunately it is sometimes not enough to keep the contents of a message secret, it may also be necessary to keep the existence of the message secret. The technique used to implement this, is called steganography. Steganography is the art and science of invisible communication. This is accomplished through hiding information in other information, thus hiding the existence of the communicated information. The word steganography is derived from the Greek words "stegaos" meaning "cover" and "grafia" meaning "writing" defining it as "covered writing". In image steganography the information is hidden exclusively in images. The idea and practice of hiding information has a long history.

In *Histories* the Greek historian Herodotus writes of a nobleman, Histaeus, who needed to communicate with his son-in-law in Greece. He shaved the head of one of his most trusted slaves and tattooed the message onto the slave's scalp. When the slave's hair grew back the slave was dispatched with the hidden message. In the Second World War the Microdot technique was developed by the Germans. Information, especially photographs, was reduced in size until it was the size of a typed period. Extremely difficult to detect, a normal cover message was sent over an insecure channel with one of the periods on the paper containing hidden information .Today steganography is mostly used on computers with digital data being the carriers and networks being the high speed delivery channels.

Steganography differs from cryptography in the sense that where cryptography focuses on keeping the contents of a message secret, steganography focuses on keeping the existence of a message secret .Steganography and cryptography are both ways to protect information from unwanted parties but neither technology alone is perfect and can be compromised. Once the presence of hidden information is revealed or even suspected, the purpose of steganography is partly defeated. The strength of steganography can thus be amplified by combining it with

cryptography. Two other technologies that are closely related to steganography are watermarking and fingerprinting. These technologies are mainly concerned with the protection of intellectual property, thus the algorithms have different requirements than steganography.

With fingerprinting on the other hand, different, unique marks are embedded in distinct copies of the carrier object that are supplied to different customers. This enables the intellectual property owner to identify customers who break their licensing agreement by supplying the property to third parties. In watermarking and fingerprinting the fact that information is hidden inside the files may be public knowledge – sometimes it may even be visible – while in steganography the imperceptibility of the information is crucial. A successful attack on a steganographic system consists of an adversary observing that there is information hidden inside a file, while a successful attack on a watermarking or fingerprinting system would not be to detect the mark, but to remove it.

Research in steganography has mainly been driven by a lack of strength in cryptographic systems. Many governments have created laws to either limit the strength of a cryptographic system or to prohibit it altogether forcing people to study other methods of secure information transfer. Businesses have also started to realize the potential of steganography in communicating trade secrets or new product information. Avoiding communication through well-known channels greatly reduces the risk of information being leaked in transit. Hiding information in a photograph of the company picnic is less suspicious than communicating an encrypted file. This paper intends to offer a state of the art overview of the different algorithms used for image steganography to illustrate the security potential of steganography for business and personal use. After the overview it briefly reflects on the suitability of various image steganography techniques for various applications. This reflection is based on a set of criteria that we have identified for image steganography.

Block Diagram

